Namespaces
Variants
Actions

Difference between revisions of "Gibbs phenomenon"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
g0444101.png
 +
$#A+1 = 42 n = 0
 +
$#C+1 = 42 : ~/encyclopedia/old_files/data/G044/G.0404410 Gibbs phenomenon
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A characteristic of the behaviour of the partial sums (or their averages) of a [[Fourier series|Fourier series]].
 
A characteristic of the behaviour of the partial sums (or their averages) of a [[Fourier series|Fourier series]].
  
Line 5: Line 17:
 
Figure: g044410a
 
Figure: g044410a
  
First noted by H. Wilbraham [[#References|[1]]] and rediscovered by J.W. Gibbs [[#References|[2]]] at a much later date. Let the partial sums <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444101.png" /> of the Fourier series of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444102.png" /> converge to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444103.png" /> in some neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444104.png" /> of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444105.png" /> at which
+
First noted by H. Wilbraham [[#References|[1]]] and rediscovered by J.W. Gibbs [[#References|[2]]] at a much later date. Let the partial sums $  s _ {n} $
 +
of the Fourier series of a function $  f $
 +
converge to $  f $
 +
in some neighbourhood $  \{ {x } : {0 < | x - x _ {0} | < h } \} $
 +
of a point $  x _ {0} $
 +
at which
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444106.png" /></td> </tr></table>
+
$$
 +
a  \equiv  f( x _ {0} - )  \leq  f ( x _ {0} + )  \equiv  b.
 +
$$
  
The Gibbs phenomenon takes place for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444107.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444108.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g0444109.png" /> where
+
The Gibbs phenomenon takes place for $  s _ {n} $
 +
at $  x _ {0} $
 +
if $  A < a \leq  b < B $
 +
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441010.png" /></td> </tr></table>
+
$$
 +
= \
 +
{fnnme \underline{lim} } _ {\begin{array}{c}
 +
n \rightarrow \infty \\
 +
x \uparrow x _ {0}
 +
\end{array}
 +
} \
 +
s _ {n} ( x),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441011.png" /></td> </tr></table>
+
$$
 +
= \overline{\lim\limits}\; _ {\begin{array}{c}
 +
n \rightarrow \infty \\
 +
x \downarrow x _ {0}
 +
\end{array}
 +
}  s _ {n} ( x).
 +
$$
  
The geometrical meaning of this is that the graphs (cf. Fig.) of the partial sums <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441012.png" /> do not approach the  "expected"  interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441013.png" /> on the vertical line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441014.png" />, but approach the strictly-larger interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441015.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441017.png" />. The Gibbs phenomenon is defined in an analogous manner for averages of the partial sums of a Fourier series when the latter is summed by some given method.
+
The geometrical meaning of this is that the graphs (cf. Fig.) of the partial sums $  s _ {n} $
 +
do not approach the  "expected"  interval $  [ a, b ] $
 +
on the vertical line $  x = x _ {0} $,  
 +
but approach the strictly-larger interval $  [ A, B ] $
 +
as $  x \rightarrow x _ {0} $
 +
and $  n \rightarrow \infty $.  
 +
The Gibbs phenomenon is defined in an analogous manner for averages of the partial sums of a Fourier series when the latter is summed by some given method.
  
For instance, the following theorems are valid for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441018.png" />-periodic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441019.png" /> of bounded variation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441020.png" /> [[#References|[3]]].
+
For instance, the following theorems are valid for $  2 \pi $-
 +
periodic functions $  f $
 +
of bounded variation on $  [ - \pi , \pi ] $[[#References|[3]]].
  
1) At points of non-removable discontinuity, and only at such points, the Gibbs phenomenon occurs for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441021.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441022.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441023.png" />, then for the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441024.png" /> the segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441025.png" />, while the segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441026.png" /> where
+
1) At points of non-removable discontinuity, and only at such points, the Gibbs phenomenon occurs for $  s _ {n} $.  
 +
In particular, if $  f( x) = ( \pi - x)/2 $
 +
for $  0 < x < 2 \pi $,  
 +
then for the point $  x = 0 $
 +
the segment $  [ a, b] = [- \pi /2 , \pi /2] $,  
 +
while the segment $  [ A, B] = [- l, l] $
 +
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441027.png" /></td> </tr></table>
+
$$
 +
= \int\limits _ { 0 } ^  \pi 
  
2) There exists an absolute constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441029.png" />, such that the Cesàro averages <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441030.png" /> do not have the Gibbs phenomenon if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441031.png" />, while if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441032.png" /> the phenomenon is observed at all points of non-removable discontinuity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441033.png" />.
+
\frac{\sin  t }{t }
 +
\
 +
dt  \approx  1.85 \dots  >  {
 +
\frac \pi {2}
 +
} .
 +
$$
 +
 
 +
2) There exists an absolute constant $  \alpha _ {0} $,  
 +
$  0 < \alpha _ {0} < 1 $,  
 +
such that the Cesàro averages $  \sigma _ {n}  ^  \alpha  $
 +
do not have the Gibbs phenomenon if $  \alpha \geq  \alpha _ {0} $,  
 +
while if $  \alpha < \alpha _ {0} $
 +
the phenomenon is observed at all points of non-removable discontinuity of $  f $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Wilbraham,  ''Cambridge and Dublin Math. J.'' , '''3'''  (1848)  pp. 198–201</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.W. Gibbs,  ''Nature'' , '''59'''  (1898)  pp. 200</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press  (1988)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Wilbraham,  ''Cambridge and Dublin Math. J.'' , '''3'''  (1848)  pp. 198–201</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.W. Gibbs,  ''Nature'' , '''59'''  (1898)  pp. 200</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Zygmund,  "Trigonometric series" , '''1–2''' , Cambridge Univ. Press  (1988)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
In a more explicit form the definitions of the constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441035.png" /> above are:
+
In a more explicit form the definitions of the constant $  A $
 +
and $  B $
 +
above are:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441036.png" /></td> </tr></table>
+
$$
 +
= \lim\limits _ {x \uparrow x _ {0} } \
 +
\lim\limits _ {n \rightarrow \infty } \
 +
\inf _ {x < y < x _ {0} } \
 +
s _ {n} ( y) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441037.png" /></td> </tr></table>
+
$$
 +
= \lim\limits _ {x \downarrow x _ {0} }  \lim\limits _ {n \rightarrow
 +
\infty }  \sup _ {x _ {0} < y < x }  s _ {n} ( y) .
 +
$$
  
At an isolated jump discontinuity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441038.png" />, the ratio <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441039.png" /> equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441040.png" />. This means that the Fourier series approximation establishes an overshoot of about <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441041.png" /> of the length of the jump at either end of the jump interval.
+
At an isolated jump discontinuity of $  f $,  
 +
the ratio $  ( B - A ) / ( b - a ) $
 +
equals  $  ( 2 / \pi ) l = 1.17898 \dots $.  
 +
This means that the Fourier series approximation establishes an overshoot of about $  8.95\pct $
 +
of the length of the jump at either end of the jump interval.
  
Actually, it was only in a second letter to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g044/g044410/g04441042.png" /> ([[#References|[a1]]]) that Gibbs stated the phenomenon correctly, though without any proof. For details see [[#References|[a2]]].
+
Actually, it was only in a second letter to $  Nature $([[#References|[a1]]]) that Gibbs stated the phenomenon correctly, though without any proof. For details see [[#References|[a2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.W. Gibbs,  ''Nature'' , '''59'''  (1899)  pp. 606</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.S. Carslaw,  "Introduction to the theory of Fourier's series and integrals" , Dover, reprint  (1930)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.W. Gibbs,  ''Nature'' , '''59'''  (1899)  pp. 606</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.S. Carslaw,  "Introduction to the theory of Fourier's series and integrals" , Dover, reprint  (1930)</TD></TR></table>

Latest revision as of 19:41, 5 June 2020


A characteristic of the behaviour of the partial sums (or their averages) of a Fourier series.

Figure: g044410a

First noted by H. Wilbraham [1] and rediscovered by J.W. Gibbs [2] at a much later date. Let the partial sums $ s _ {n} $ of the Fourier series of a function $ f $ converge to $ f $ in some neighbourhood $ \{ {x } : {0 < | x - x _ {0} | < h } \} $ of a point $ x _ {0} $ at which

$$ a \equiv f( x _ {0} - ) \leq f ( x _ {0} + ) \equiv b. $$

The Gibbs phenomenon takes place for $ s _ {n} $ at $ x _ {0} $ if $ A < a \leq b < B $ where

$$ A = \ {fnnme \underline{lim} } _ {\begin{array}{c} n \rightarrow \infty \\ x \uparrow x _ {0} \end{array} } \ s _ {n} ( x), $$

$$ B = \overline{\lim\limits}\; _ {\begin{array}{c} n \rightarrow \infty \\ x \downarrow x _ {0} \end{array} } s _ {n} ( x). $$

The geometrical meaning of this is that the graphs (cf. Fig.) of the partial sums $ s _ {n} $ do not approach the "expected" interval $ [ a, b ] $ on the vertical line $ x = x _ {0} $, but approach the strictly-larger interval $ [ A, B ] $ as $ x \rightarrow x _ {0} $ and $ n \rightarrow \infty $. The Gibbs phenomenon is defined in an analogous manner for averages of the partial sums of a Fourier series when the latter is summed by some given method.

For instance, the following theorems are valid for $ 2 \pi $- periodic functions $ f $ of bounded variation on $ [ - \pi , \pi ] $[3].

1) At points of non-removable discontinuity, and only at such points, the Gibbs phenomenon occurs for $ s _ {n} $. In particular, if $ f( x) = ( \pi - x)/2 $ for $ 0 < x < 2 \pi $, then for the point $ x = 0 $ the segment $ [ a, b] = [- \pi /2 , \pi /2] $, while the segment $ [ A, B] = [- l, l] $ where

$$ l = \int\limits _ { 0 } ^ \pi \frac{\sin t }{t } \ dt \approx 1.85 \dots > { \frac \pi {2} } . $$

2) There exists an absolute constant $ \alpha _ {0} $, $ 0 < \alpha _ {0} < 1 $, such that the Cesàro averages $ \sigma _ {n} ^ \alpha $ do not have the Gibbs phenomenon if $ \alpha \geq \alpha _ {0} $, while if $ \alpha < \alpha _ {0} $ the phenomenon is observed at all points of non-removable discontinuity of $ f $.

References

[1] H. Wilbraham, Cambridge and Dublin Math. J. , 3 (1848) pp. 198–201
[2] J.W. Gibbs, Nature , 59 (1898) pp. 200
[3] A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988)

Comments

In a more explicit form the definitions of the constant $ A $ and $ B $ above are:

$$ A = \lim\limits _ {x \uparrow x _ {0} } \ \lim\limits _ {n \rightarrow \infty } \ \inf _ {x < y < x _ {0} } \ s _ {n} ( y) , $$

$$ B = \lim\limits _ {x \downarrow x _ {0} } \lim\limits _ {n \rightarrow \infty } \sup _ {x _ {0} < y < x } s _ {n} ( y) . $$

At an isolated jump discontinuity of $ f $, the ratio $ ( B - A ) / ( b - a ) $ equals $ ( 2 / \pi ) l = 1.17898 \dots $. This means that the Fourier series approximation establishes an overshoot of about $ 8.95\pct $ of the length of the jump at either end of the jump interval.

Actually, it was only in a second letter to $ Nature $([a1]) that Gibbs stated the phenomenon correctly, though without any proof. For details see [a2].

References

[a1] J.W. Gibbs, Nature , 59 (1899) pp. 606
[a2] H.S. Carslaw, "Introduction to the theory of Fourier's series and integrals" , Dover, reprint (1930)
How to Cite This Entry:
Gibbs phenomenon. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gibbs_phenomenon&oldid=12010
This article was adapted from an original article by P.L. Ul'yanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article