Namespaces
Variants
Actions

Difference between revisions of "Free harmonic oscillation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A sinusoidal oscillation. If a mechanical or physical quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f0415701.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f0415702.png" /> denotes time, varies in accordance with the law
+
<!--
 +
f0415701.png
 +
$#A+1 = 65 n = 0
 +
$#C+1 = 65 : ~/encyclopedia/old_files/data/F041/F.0401570 Free harmonic oscillation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f0415703.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
then it is said that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f0415704.png" /> performs a free harmonic oscillation. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f0415705.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f0415706.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f0415707.png" /> are real constants, called, respectively, the amplitude, frequency and phase of the free harmonic oscillation. The period is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f0415708.png" />. The following terminology is often used in physics and engineering. A free harmonic oscillation is called a harmonic oscillation, or a simple harmonic oscillation; functions of the form (1) are called [[Harmonics|harmonics]], the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f0415709.png" /> is called the instantaneous phase, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157010.png" /> is called the initial phase. The quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157011.png" /> is also called the circular or cyclic frequency, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157012.png" /> is called the frequency. A free harmonic oscillation (1) can be written as
+
A sinusoidal oscillation. If a mechanical or physical quantity  $  x ( t) $,  
 +
where  $  t $
 +
denotes time, varies in accordance with the law
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157013.png" /></td> </tr></table>
+
$$ \tag{1 }
 +
x ( t)  = \
 +
A  \cos  ( \omega t + \phi ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157015.png" /> are connected by the relations
+
then it is said that  $  x ( t) $
 +
performs a free harmonic oscillation. Here  $  A > 0 $,
 +
$  \omega > 0 $
 +
and  $  \phi $
 +
are real constants, called, respectively, the amplitude, frequency and phase of the free harmonic oscillation. The period is  $  T = 2 \pi / \omega $.  
 +
The following terminology is often used in physics and engineering. A free harmonic oscillation is called a harmonic oscillation, or a simple harmonic oscillation; functions of the form (1) are called [[Harmonics|harmonics]], the variable  $  \omega t + \phi $
 +
is called the instantaneous phase, and  $  \phi $
 +
is called the initial phase. The quantity  $  \omega $
 +
is also called the circular or cyclic frequency, and $  f = \omega /2 \pi $
 +
is called the frequency. A free harmonic oscillation (1) can be written as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157016.png" /></td> </tr></table>
+
$$
 +
x ( t)  = \
 +
a  \cos  \omega t + b  \sin  \omega t,
 +
$$
 +
 
 +
where  $  a, b $
 +
and  $  A, \phi $
 +
are connected by the relations
 +
 
 +
$$
 +
= \
 +
\sqrt {a  ^ {2} + b  ^ {2} } ,\ \
 +
\cos  \phi  = \
 +
{
 +
\frac{a}{\sqrt {a  ^ {2} + b  ^ {2} } }
 +
} ,\ \
 +
\sin  \phi  = \
 +
{
 +
\frac{b}{\sqrt {a  ^ {2} + b  ^ {2} } }
 +
} ,
 +
$$
  
 
or by
 
or by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157017.png" /></td> </tr></table>
+
$$
 +
x ( t)  = \
 +
\mathop{\rm Re} ( Ae ^ {i ( \omega t + \phi ) } ).
 +
$$
  
Often the phase is taken to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157018.png" /> and not <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157019.png" />.
+
Often the phase is taken to be $  - \phi $
 +
and not $  \phi $.
  
 
Small oscillations of mechanical or physical systems with one degree of freedom near a stable non-degenerate equilibrium position are free harmonic oscillations, to a large degree of exactness. For example, small oscillations of a pendulum, oscillations of a load suspended by a string, oscillations of a tuning fork, the variation of the direction and strength of the current in an oscillating electrical circuit, the rolling of a ship, etc. A system performing free harmonic oscillation is called a linear harmonic oscillator, and its oscillation is described by the equation
 
Small oscillations of mechanical or physical systems with one degree of freedom near a stable non-degenerate equilibrium position are free harmonic oscillations, to a large degree of exactness. For example, small oscillations of a pendulum, oscillations of a load suspended by a string, oscillations of a tuning fork, the variation of the direction and strength of the current in an oscillating electrical circuit, the rolling of a ship, etc. A system performing free harmonic oscillation is called a linear harmonic oscillator, and its oscillation is described by the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157020.png" /></td> </tr></table>
+
$$
 +
\dot{x} dot +
 +
\omega  ^ {2} x  = 0.
 +
$$
  
For a mathematical pendulum of length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157021.png" /> and mass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157022.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157023.png" />; for a load of mass <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157024.png" /> on a string with elasticity coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157026.png" />; for an oscillating electrical circuit of capacity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157027.png" /> and inductance <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157029.png" />. The equilibrium position <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157031.png" /> in the phase plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157032.png" /> for a free harmonic oscillator is the centre, and the phase trajectories are circles.
+
For a mathematical pendulum of length $  l $
 +
and mass $  m $,  
 +
$  \omega  ^ {2} = g/l $;  
 +
for a load of mass $  m $
 +
on a string with elasticity coefficient $  k $,  
 +
$  \omega  ^ {2} = k/m $;  
 +
for an oscillating electrical circuit of capacity $  C $
 +
and inductance $  L $,  
 +
$  \omega  ^ {2} = 1/CL $.  
 +
The equilibrium position $  x = 0 $,  
 +
$  \dot{x} = 0 $
 +
in the phase plane $  ( x, \dot{x} ) $
 +
for a free harmonic oscillator is the centre, and the phase trajectories are circles.
  
The sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157033.png" /> of two free harmonic oscillations, where
+
The sum $  x _ {1} ( t) + x _ {2} ( t) $
 +
of two free harmonic oscillations, where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157034.png" /></td> </tr></table>
+
$$
 +
x _ {j} ( t)  = \
 +
A _ {j}  \cos \
 +
( \omega _ {j} t + \phi _ {j} ),\ \
 +
j = 1, 2,
 +
$$
  
with commensurable frequencies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157036.png" /> is a free harmonic oscillation. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157038.png" /> are incommensurable, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157039.png" /> is an [[Almost-periodic function|almost-periodic function]], and
+
with commensurable frequencies $  \omega _ {1} $
 +
and $  \omega _ {2} $
 +
is a free harmonic oscillation. If $  \omega _ {1} $
 +
and $  \omega _ {2} $
 +
are incommensurable, then $  x _ {1} ( t) + x _ {2} ( t) $
 +
is an [[Almost-periodic function|almost-periodic function]], and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157040.png" /></td> </tr></table>
+
$$
 +
\sup _ {t \in \mathbf R } \
 +
( x _ {1} ( t) + x _ {2} ( t))  = \
 +
A _ {1} + A _ {2}  = \
 +
- \inf _ {t \in \mathbf R } \
 +
( x _ {1} ( t) + x _ {2} ( t)).
 +
$$
  
The sum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157041.png" /> free harmonic oscillations with rationally-independent frequencies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157042.png" /> is also almost-periodic. For the sum of two free harmonic oscillations, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157043.png" /> is called the derangement. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157044.png" /> is small, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157045.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157047.png" /> have the same order of magnitude, then
+
The sum of $  n $
 +
free harmonic oscillations with rationally-independent frequencies $  \omega _ {1} \dots \omega _ {n} $
 +
is also almost-periodic. For the sum of two free harmonic oscillations, $  \Omega = | \omega _ {1} - \omega _ {2} | $
 +
is called the derangement. If $  \Omega $
 +
is small, $  \Omega / \omega _ {1} \ll  1 $,  
 +
and if $  \omega _ {1} $
 +
and $  \omega _ {2} $
 +
have the same order of magnitude, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157048.png" /></td> </tr></table>
+
$$
 +
x _ {1} ( t) + x _ {2} ( t)  = \
 +
A ( t)  \cos  ( \omega _ {1} t + \phi ( t)),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157049.png" /></td> </tr></table>
+
$$
 +
A  ^ {2} ( t)  = A _ {1}  ^ {2} + A _ {2}  ^ {2} +
 +
2A _ {1} A _ {2}  \cos ( \psi ( t) - \phi _ {1} ),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157050.png" /></td> </tr></table>
+
$$
 +
\psi ( t)  = \Omega t + \phi _ {2} .
 +
$$
  
The  "amplitude"  <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157051.png" /> is a slowly-varying function of period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157052.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157053.png" /> varies from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157054.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157055.png" />. The oscillation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157056.png" /> is called a beat, and the  "amplitude"  <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157057.png" /> alternatingly increases and decreases. This case is important in the analysis of receiving devices.
+
The  "amplitude"   $ A ( t) $
 +
is a slowly-varying function of period $  2 \pi / \Omega $,  
 +
and $  A  ^ {2} ( t) $
 +
varies from $  ( A _ {1} - A _ {2} )  ^ {2} $
 +
to $  ( A _ {1} + A _ {2} )  ^ {2} $.  
 +
The oscillation $  x _ {1} ( t) + x _ {2} ( t) $
 +
is called a beat, and the  "amplitude"   $ A ( t) $
 +
alternatingly increases and decreases. This case is important in the analysis of receiving devices.
  
Suppose one has a system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157058.png" /> equations
+
Suppose one has a system of $  n $
 +
equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157059.png" /></td> </tr></table>
+
$$
 +
M \dot{x} dot + Kx  = 0,\ \
 +
x \in \mathbf R  ^ {n} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157061.png" /> are real symmetric positive-definite matrices with constant elements. By using an invertible transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157062.png" /> this system is transformed into the decomposed system
+
where $  M $
 +
and $  K $
 +
are real symmetric positive-definite matrices with constant elements. By using an invertible transformation $  x = Ty $
 +
this system is transformed into the decomposed system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157063.png" /></td> </tr></table>
+
$$
 +
\dot{y} dot _ {j} + \omega _ {j}  ^ {2} y _ {j}  = 0,\ \
 +
j = 1 \dots n.
 +
$$
  
The coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157064.png" /> are called normal. In normal coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041570/f04157065.png" /> is the vector sum of free harmonic oscillations along the coordinate axes.
+
The coordinates $  y _ {1} \dots y _ {n} $
 +
are called normal. In normal coordinates $  x ( t) $
 +
is the vector sum of free harmonic oscillations along the coordinate axes.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Andronov,  A.A. Vitt,  A.E. Khaikin,  "Theory of oscillators" , Dover, reprint  (1987)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.S. Gorelik,  "Oscillations and waves" , Moscow-Leningrad  (1950)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshits,  "Mechanics" , Pergamon  (1965)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Andronov,  A.A. Vitt,  A.E. Khaikin,  "Theory of oscillators" , Dover, reprint  (1987)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G.S. Gorelik,  "Oscillations and waves" , Moscow-Leningrad  (1950)  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L.D. Landau,  E.M. Lifshits,  "Mechanics" , Pergamon  (1965)  (Translated from Russian)</TD></TR></table>

Latest revision as of 19:40, 5 June 2020


A sinusoidal oscillation. If a mechanical or physical quantity $ x ( t) $, where $ t $ denotes time, varies in accordance with the law

$$ \tag{1 } x ( t) = \ A \cos ( \omega t + \phi ), $$

then it is said that $ x ( t) $ performs a free harmonic oscillation. Here $ A > 0 $, $ \omega > 0 $ and $ \phi $ are real constants, called, respectively, the amplitude, frequency and phase of the free harmonic oscillation. The period is $ T = 2 \pi / \omega $. The following terminology is often used in physics and engineering. A free harmonic oscillation is called a harmonic oscillation, or a simple harmonic oscillation; functions of the form (1) are called harmonics, the variable $ \omega t + \phi $ is called the instantaneous phase, and $ \phi $ is called the initial phase. The quantity $ \omega $ is also called the circular or cyclic frequency, and $ f = \omega /2 \pi $ is called the frequency. A free harmonic oscillation (1) can be written as

$$ x ( t) = \ a \cos \omega t + b \sin \omega t, $$

where $ a, b $ and $ A, \phi $ are connected by the relations

$$ A = \ \sqrt {a ^ {2} + b ^ {2} } ,\ \ \cos \phi = \ { \frac{a}{\sqrt {a ^ {2} + b ^ {2} } } } ,\ \ \sin \phi = \ { \frac{b}{\sqrt {a ^ {2} + b ^ {2} } } } , $$

or by

$$ x ( t) = \ \mathop{\rm Re} ( Ae ^ {i ( \omega t + \phi ) } ). $$

Often the phase is taken to be $ - \phi $ and not $ \phi $.

Small oscillations of mechanical or physical systems with one degree of freedom near a stable non-degenerate equilibrium position are free harmonic oscillations, to a large degree of exactness. For example, small oscillations of a pendulum, oscillations of a load suspended by a string, oscillations of a tuning fork, the variation of the direction and strength of the current in an oscillating electrical circuit, the rolling of a ship, etc. A system performing free harmonic oscillation is called a linear harmonic oscillator, and its oscillation is described by the equation

$$ \dot{x} dot + \omega ^ {2} x = 0. $$

For a mathematical pendulum of length $ l $ and mass $ m $, $ \omega ^ {2} = g/l $; for a load of mass $ m $ on a string with elasticity coefficient $ k $, $ \omega ^ {2} = k/m $; for an oscillating electrical circuit of capacity $ C $ and inductance $ L $, $ \omega ^ {2} = 1/CL $. The equilibrium position $ x = 0 $, $ \dot{x} = 0 $ in the phase plane $ ( x, \dot{x} ) $ for a free harmonic oscillator is the centre, and the phase trajectories are circles.

The sum $ x _ {1} ( t) + x _ {2} ( t) $ of two free harmonic oscillations, where

$$ x _ {j} ( t) = \ A _ {j} \cos \ ( \omega _ {j} t + \phi _ {j} ),\ \ j = 1, 2, $$

with commensurable frequencies $ \omega _ {1} $ and $ \omega _ {2} $ is a free harmonic oscillation. If $ \omega _ {1} $ and $ \omega _ {2} $ are incommensurable, then $ x _ {1} ( t) + x _ {2} ( t) $ is an almost-periodic function, and

$$ \sup _ {t \in \mathbf R } \ ( x _ {1} ( t) + x _ {2} ( t)) = \ A _ {1} + A _ {2} = \ - \inf _ {t \in \mathbf R } \ ( x _ {1} ( t) + x _ {2} ( t)). $$

The sum of $ n $ free harmonic oscillations with rationally-independent frequencies $ \omega _ {1} \dots \omega _ {n} $ is also almost-periodic. For the sum of two free harmonic oscillations, $ \Omega = | \omega _ {1} - \omega _ {2} | $ is called the derangement. If $ \Omega $ is small, $ \Omega / \omega _ {1} \ll 1 $, and if $ \omega _ {1} $ and $ \omega _ {2} $ have the same order of magnitude, then

$$ x _ {1} ( t) + x _ {2} ( t) = \ A ( t) \cos ( \omega _ {1} t + \phi ( t)), $$

$$ A ^ {2} ( t) = A _ {1} ^ {2} + A _ {2} ^ {2} + 2A _ {1} A _ {2} \cos ( \psi ( t) - \phi _ {1} ), $$

$$ \psi ( t) = \Omega t + \phi _ {2} . $$

The "amplitude" $ A ( t) $ is a slowly-varying function of period $ 2 \pi / \Omega $, and $ A ^ {2} ( t) $ varies from $ ( A _ {1} - A _ {2} ) ^ {2} $ to $ ( A _ {1} + A _ {2} ) ^ {2} $. The oscillation $ x _ {1} ( t) + x _ {2} ( t) $ is called a beat, and the "amplitude" $ A ( t) $ alternatingly increases and decreases. This case is important in the analysis of receiving devices.

Suppose one has a system of $ n $ equations

$$ M \dot{x} dot + Kx = 0,\ \ x \in \mathbf R ^ {n} , $$

where $ M $ and $ K $ are real symmetric positive-definite matrices with constant elements. By using an invertible transformation $ x = Ty $ this system is transformed into the decomposed system

$$ \dot{y} dot _ {j} + \omega _ {j} ^ {2} y _ {j} = 0,\ \ j = 1 \dots n. $$

The coordinates $ y _ {1} \dots y _ {n} $ are called normal. In normal coordinates $ x ( t) $ is the vector sum of free harmonic oscillations along the coordinate axes.

References

[1] A.A. Andronov, A.A. Vitt, A.E. Khaikin, "Theory of oscillators" , Dover, reprint (1987) (Translated from Russian)
[2] G.S. Gorelik, "Oscillations and waves" , Moscow-Leningrad (1950) (In Russian)
[3] L.D. Landau, E.M. Lifshits, "Mechanics" , Pergamon (1965) (Translated from Russian)
How to Cite This Entry:
Free harmonic oscillation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Free_harmonic_oscillation&oldid=17959
This article was adapted from an original article by M.V. Fedoryuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article