Namespaces
Variants
Actions

Difference between revisions of "Ergodic theory, non-commutative"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(LaTeX)
 
Line 1: Line 1:
A branch of the theory of operator algebras in which one studies automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e0361601.png" />-algebras (cf. [[C*-algebra|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e0361602.png" />-algebra]]) from the point of view of [[Ergodic theory|ergodic theory]].
+
{{TEX|done}}
  
The range of questions considered in non-commutative ergodic theory and the results obtained so far (1984) can be basically divided into three groups. To the first group belong results connected with the construction of a complete system of invariants for outer conjugacy. (Two automorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e0361603.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e0361604.png" /> are called outer conjugate if there exists an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e0361605.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e0361606.png" /> is an inner automorphism.) The corresponding classification problem has been solved (see [[#References|[1]]]) for approximately-finite factors (cf. [[Factor|Factor]]) of type II and type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e0361607.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e0361608.png" /> (see [[#References|[2]]]).
+
A branch of the theory of operator algebras in which one studies automorphisms of [[C*-algebra|$C^*$-algebra]]s from the point of view of [[ergodic theory]].
 +
 
 +
The range of questions considered in non-commutative ergodic theory and the results obtained so far (1984) can be basically divided into three groups. To the first group belong results connected with the construction of a complete system of invariants for outer conjugacy. (Two automorphisms $\theta_1$ and $\theta_2$ are called outer conjugate if there exists an automorphism $\sigma$ such that $\theta_1 \sigma \theta_2^{-1} \sigma^{-1}$ is an inner automorphism.) The corresponding classification problem has been solved (see [[#References|[1]]]) for approximately-finite factors (cf. [[Factor]]) of type $\mathrm{II}$ and type $\mathrm{III}_\lambda$, $0 < \lambda < 1$ (see [[#References|[2]]]).
  
 
To the second group belong articles devoted to the study of properties of equilibrium states (by a state in an algebra one means a positive linear normalized functional on the algebra) which are invariant under a one-parameter group of automorphisms. In particular, one considers questions of existence and uniqueness of Gibbs states (see [[#References|[3]]]). Closely related to this group of problems are investigations on non-commutative generalizations of ergodic theorems (see, for example, [[#References|[4]]], [[#References|[5]]]).
 
To the second group belong articles devoted to the study of properties of equilibrium states (by a state in an algebra one means a positive linear normalized functional on the algebra) which are invariant under a one-parameter group of automorphisms. In particular, one considers questions of existence and uniqueness of Gibbs states (see [[#References|[3]]]). Closely related to this group of problems are investigations on non-commutative generalizations of ergodic theorems (see, for example, [[#References|[4]]], [[#References|[5]]]).
  
The third group consists of results concerning the entropy theory of automorphisms. For automorphisms of finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e03616010.png" />-algebras (see [[Von Neumann algebra|von Neumann algebra]]) an invariant has been constructed [[#References|[6]]] that generalizes the [[Entropy|entropy]] of a metric dynamical system. The entropy of automorphisms of an arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e03616011.png" />-algebra with respect to a state <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e03616012.png" /> has been investigated [[#References|[7]]].
+
The third group consists of results concerning the entropy theory of automorphisms. For automorphisms of finite $W^*$-algebras (see [[Von Neumann algebra|von Neumann algebra]]) an invariant has been constructed [[#References|[6]]] that generalizes the [[entropy]] of a metric dynamical system. The entropy of automorphisms of an arbitrary $W^*$-algebra with respect to a state $\phi$ has been investigated [[#References|[7]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Connes,  "Outer conjugacy classes of automorphisms of factors"  ''Ann. Sci. Ecole. Norm. Sup.'' , '''8'''  (1975)  pp. 383–419</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.Ya. Golodets,  "Modular operators and asymptotic commutativity in Von Neumann algebras"  ''Russian Math. Surveys'' , '''33''' :  1  (1978)  pp. 47–106  ''Uspekhi Mat. Nauk'' , '''33''' :  1  (1978)  pp. 43–94</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  H. Araki,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e03616013.png" />-algebras and applications to physics" , ''Lect. notes in math.'' , '''650''' , Springer  (1978)  pp. 66–84</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  Ya.G. Sinai,  V.V. Anshelevich,  "Some problems of non-commutative ergodic theory"  ''Russian Math. Surveys'' , '''31''' :  4  (1976)  pp. 157–174  ''Uspekhi Mat. Nauk'' , '''31''' :  4  (1976)  pp. 151–167</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  E.C. Lance,  "Ergodic theorems for convex sets and operator algebras"  ''Invent. Math.'' , '''37'''  (1976)  pp. 201–214</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A. Connes,  E. Størmer,  "Entropy for automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e03616014.png" /> Von Neumann algebras"  ''Acta Math.'' , '''134'''  (1975)  pp. 289–306</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.M. Stepin,  A.G. Shukhov,  "The centralizer of diagonable states and entropies of automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e036/e036160/e03616015.png" />-algebras"  ''Soviet Math. (Vuz)'' , '''26''' :  8  (1982)  pp. 61–71  ''Izv. Vuzov. Mat.'' , '''8'''  (1982)  pp. 52–60</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A. Connes,  "Outer conjugacy classes of automorphisms of factors"  ''Ann. Sci. Ecole. Norm. Sup.'' , '''8'''  (1975)  pp. 383–419</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  V.Ya. Golodets,  "Modular operators and asymptotic commutativity in Von Neumann algebras"  ''Russian Math. Surveys'' , '''33''' :  1  (1978)  pp. 47–106  ''Uspekhi Mat. Nauk'' , '''33''' :  1  (1978)  pp. 43–94</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  H. Araki,  "$C^*$-algebras and applications to physics" , ''Lect. notes in math.'' , '''650''' , Springer  (1978)  pp. 66–84</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top">  Ya.G. Sinai,  V.V. Anshelevich,  "Some problems of non-commutative ergodic theory"  ''Russian Math. Surveys'' , '''31''' :  4  (1976)  pp. 157–174  ''Uspekhi Mat. Nauk'' , '''31''' :  4  (1976)  pp. 151–167</TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top">  E.C. Lance,  "Ergodic theorems for convex sets and operator algebras"  ''Invent. Math.'' , '''37'''  (1976)  pp. 201–214</TD></TR>
 +
<TR><TD valign="top">[6]</TD> <TD valign="top">  A. Connes,  E. Størmer,  "Entropy for automorphisms of $\mathrm{II}_1$ Von Neumann algebras"  ''Acta Math.'' , '''134'''  (1975)  pp. 289–306</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.M. Stepin,  A.G. Shukhov,  "The centralizer of diagonable states and entropies of automorphisms of $W^*$-algebras"  ''Soviet Math. (Vuz)'' , '''26''' :  8  (1982)  pp. 61–71  ''Izv. Vuzov. Mat.'' , '''8'''  (1982)  pp. 52–60</TD></TR>
 +
</table>

Latest revision as of 21:35, 15 December 2014


A branch of the theory of operator algebras in which one studies automorphisms of $C^*$-algebras from the point of view of ergodic theory.

The range of questions considered in non-commutative ergodic theory and the results obtained so far (1984) can be basically divided into three groups. To the first group belong results connected with the construction of a complete system of invariants for outer conjugacy. (Two automorphisms $\theta_1$ and $\theta_2$ are called outer conjugate if there exists an automorphism $\sigma$ such that $\theta_1 \sigma \theta_2^{-1} \sigma^{-1}$ is an inner automorphism.) The corresponding classification problem has been solved (see [1]) for approximately-finite factors (cf. Factor) of type $\mathrm{II}$ and type $\mathrm{III}_\lambda$, $0 < \lambda < 1$ (see [2]).

To the second group belong articles devoted to the study of properties of equilibrium states (by a state in an algebra one means a positive linear normalized functional on the algebra) which are invariant under a one-parameter group of automorphisms. In particular, one considers questions of existence and uniqueness of Gibbs states (see [3]). Closely related to this group of problems are investigations on non-commutative generalizations of ergodic theorems (see, for example, [4], [5]).

The third group consists of results concerning the entropy theory of automorphisms. For automorphisms of finite $W^*$-algebras (see von Neumann algebra) an invariant has been constructed [6] that generalizes the entropy of a metric dynamical system. The entropy of automorphisms of an arbitrary $W^*$-algebra with respect to a state $\phi$ has been investigated [7].

References

[1] A. Connes, "Outer conjugacy classes of automorphisms of factors" Ann. Sci. Ecole. Norm. Sup. , 8 (1975) pp. 383–419
[2] V.Ya. Golodets, "Modular operators and asymptotic commutativity in Von Neumann algebras" Russian Math. Surveys , 33 : 1 (1978) pp. 47–106 Uspekhi Mat. Nauk , 33 : 1 (1978) pp. 43–94
[3] H. Araki, "$C^*$-algebras and applications to physics" , Lect. notes in math. , 650 , Springer (1978) pp. 66–84
[4] Ya.G. Sinai, V.V. Anshelevich, "Some problems of non-commutative ergodic theory" Russian Math. Surveys , 31 : 4 (1976) pp. 157–174 Uspekhi Mat. Nauk , 31 : 4 (1976) pp. 151–167
[5] E.C. Lance, "Ergodic theorems for convex sets and operator algebras" Invent. Math. , 37 (1976) pp. 201–214
[6] A. Connes, E. Størmer, "Entropy for automorphisms of $\mathrm{II}_1$ Von Neumann algebras" Acta Math. , 134 (1975) pp. 289–306
[7] A.M. Stepin, A.G. Shukhov, "The centralizer of diagonable states and entropies of automorphisms of $W^*$-algebras" Soviet Math. (Vuz) , 26 : 8 (1982) pp. 61–71 Izv. Vuzov. Mat. , 8 (1982) pp. 52–60
How to Cite This Entry:
Ergodic theory, non-commutative. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ergodic_theory,_non-commutative&oldid=17536
This article was adapted from an original article by A.M. Stepin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article