Namespaces
Variants
Actions

Difference between revisions of "Equi-dimensional ideal"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e0359701.png" /> of an integral domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e0359702.png" /> (finitely generated over some field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e0359703.png" />) having the following property: All prime ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e0359704.png" /> associated with the primary ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e0359705.png" /> from the primary decomposition
+
<!--
 +
e0359701.png
 +
$#A+1 = 14 n = 0
 +
$#C+1 = 14 : ~/encyclopedia/old_files/data/E035/E.0305970 Equi\AAhdimensional ideal
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e0359706.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
have the same dimension, that is, the quotient rings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e0359707.png" /> have the same Krull dimension for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e0359708.png" />. This common dimension is called the dimension of the equi-dimensional ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e0359709.png" />.
+
An ideal  $  \mathfrak m $
 +
of an integral domain  $  R $(
 +
finitely generated over some field  $  k $)
 +
having the following property: All prime ideals  $  \mathfrak P _ {1} \dots \mathfrak P _ {s} $
 +
associated with the primary ideals  $  \mathfrak Q _ {1} \dots \mathfrak Q _ {s} $
 +
from the primary decomposition
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e03597010.png" /> is the ring of regular functions on a certain affine variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e03597011.png" />, then an ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e03597012.png" /> of it is equi-dimensional if and only if all irreducible components of the subvariety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e03597013.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035970/e03597014.png" /> have the same dimension.
+
$$
 +
\mathfrak m  = \
 +
\mathfrak Q _ {1} \cap \dots
 +
\cap \mathfrak Q _ {s}  $$
  
 +
have the same dimension, that is, the quotient rings  $  R/ \mathfrak P _ {i} $
 +
have the same Krull dimension for all  $  i $.
 +
This common dimension is called the dimension of the equi-dimensional ideal  $  \mathfrak m $.
  
 +
If  $  R $
 +
is the ring of regular functions on a certain affine variety  $  X $,
 +
then an ideal  $  \mathfrak m $
 +
of it is equi-dimensional if and only if all irreducible components of the subvariety  $  Y \subset  X $
 +
defined by  $  \mathfrak m $
 +
have the same dimension.
  
 
====Comments====
 
====Comments====

Latest revision as of 19:37, 5 June 2020


An ideal $ \mathfrak m $ of an integral domain $ R $( finitely generated over some field $ k $) having the following property: All prime ideals $ \mathfrak P _ {1} \dots \mathfrak P _ {s} $ associated with the primary ideals $ \mathfrak Q _ {1} \dots \mathfrak Q _ {s} $ from the primary decomposition

$$ \mathfrak m = \ \mathfrak Q _ {1} \cap \dots \cap \mathfrak Q _ {s} $$

have the same dimension, that is, the quotient rings $ R/ \mathfrak P _ {i} $ have the same Krull dimension for all $ i $. This common dimension is called the dimension of the equi-dimensional ideal $ \mathfrak m $.

If $ R $ is the ring of regular functions on a certain affine variety $ X $, then an ideal $ \mathfrak m $ of it is equi-dimensional if and only if all irreducible components of the subvariety $ Y \subset X $ defined by $ \mathfrak m $ have the same dimension.

Comments

An equi-dimensional ideal is also called an unmixed ideal. Instead of the phrase "dimension of an equi-dimensional ideal" one also uses the term "equi-dimension of an idealequi-dimension" (of the ideal).

An integrally-closed Noetherian domain is an integral domain all principal ideals of which are equi-dimensional, [a1], p. 196.

References

[a1] O. Zariski, P. Samuel, "Commutative algebra" , 2 , Springer (1975)
How to Cite This Entry:
Equi-dimensional ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Equi-dimensional_ideal&oldid=13802
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article