Namespaces
Variants
Actions

Difference between revisions of "Divergent integral"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A concept opposite to that of a convergent integral (see also [[Singular integral|Singular integral]]). For example, if a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d0336101.png" /> is defined on a bounded or unbounded interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d0336102.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d0336103.png" />, if for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d0336104.png" /> it is integrable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d0336105.png" /> and if there is no finite limit
+
<!--
 +
d0336101.png
 +
$#A+1 = 11 n = 0
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/D033/D.0303610 Divergent integral
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d0336106.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
then one says that the integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d0336107.png" /> diverges. In the case that
+
A concept opposite to that of a convergent integral (see also [[Singular integral|Singular integral]]). For example, if a function  $  f $
 +
is defined on a bounded or unbounded interval  $  [ a, b) $,
 +
$  - \infty \leq  a \leq  b \leq  \infty $,
 +
if for each  $  \eta \in [ a, b) $
 +
it is integrable on  $  [ a, \eta ] $
 +
and if there is no finite limit
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d0336108.png" /></td> </tr></table>
+
$$
 +
\lim\limits _ {\eta \rightarrow b } \
 +
\int\limits _ { a } ^  \eta 
 +
f ( x)  dx,
 +
$$
  
one says that the divergent integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d0336109.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d03361010.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033610/d03361011.png" />, respectively.
+
then one says that the integral  $  \int _ {a}  ^ {b} f ( x)  dx $
 +
diverges. In the case that
 +
 
 +
$$
 +
\lim\limits _ {\eta \rightarrow b } \
 +
\int\limits _ { a } ^  \eta 
 +
f ( x)  dx  = \
 +
+ \infty \  \textrm{ or } \ \
 +
- \infty ,
 +
$$
 +
 
 +
one says that the divergent integral $  \int _ {a}  ^ {b} f ( x)  dx $
 +
is equal to $  + \infty $
 +
or $  - \infty $,  
 +
respectively.

Latest revision as of 19:36, 5 June 2020


A concept opposite to that of a convergent integral (see also Singular integral). For example, if a function $ f $ is defined on a bounded or unbounded interval $ [ a, b) $, $ - \infty \leq a \leq b \leq \infty $, if for each $ \eta \in [ a, b) $ it is integrable on $ [ a, \eta ] $ and if there is no finite limit

$$ \lim\limits _ {\eta \rightarrow b } \ \int\limits _ { a } ^ \eta f ( x) dx, $$

then one says that the integral $ \int _ {a} ^ {b} f ( x) dx $ diverges. In the case that

$$ \lim\limits _ {\eta \rightarrow b } \ \int\limits _ { a } ^ \eta f ( x) dx = \ + \infty \ \textrm{ or } \ \ - \infty , $$

one says that the divergent integral $ \int _ {a} ^ {b} f ( x) dx $ is equal to $ + \infty $ or $ - \infty $, respectively.

How to Cite This Entry:
Divergent integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Divergent_integral&oldid=17382
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article