Namespaces
Variants
Actions

Difference between revisions of "Directing functionals, method of"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex details)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A special method for proving theorems about eigen function expansions of self-adjoint differential operators. In the special case of a second-order singular differential operator on the positive semi-axis, the corresponding theorem was first obtained by H. Weyl [[#References|[1]]]. The general theorem for a differential operator of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d0327701.png" /> was first proved by M.G. Krein [[#References|[2]]], who used the method now known as the method of directing functionals. The result may be formulated as follows (see [[#References|[3]]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d0327702.png" /> be a self-adjoint differential expression of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d0327703.png" /> on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d0327704.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d0327705.png" /> be the system of solutions of the equation
+
<!--
 +
d0327701.png
 +
$#A+1 = 24 n = 0
 +
$#C+1 = 24 : ~/encyclopedia/old_files/data/D032/D.0302770 Directing functionals, method of
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d0327706.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A special method for proving theorems about eigen function expansions of self-adjoint differential operators. In the special case of a second-order singular differential operator on the positive semi-axis, the corresponding theorem was first obtained by H. Weyl [[#References|[1]]]. The general theorem for a differential operator of order  $  2n $
 +
was first proved by M.G. Krein [[#References|[2]]], who used the method now known as the method of directing functionals. The result may be formulated as follows (see [[#References|[3]]]). Let  $  l ( y) $
 +
be a self-adjoint differential expression of order  $  2n $
 +
on an interval  $  ( a, b) $,
 +
let  $  u _ {1} ( x, \lambda ) \dots u _ {2n} ( x, \lambda ) $
 +
be the system of solutions of the equation
 +
 
 +
$$
 +
l ( y)  =  \lambda y,
 +
$$
  
 
satisfying the initial conditions
 
satisfying the initial conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d0327707.png" /></td> </tr></table>
+
$$
 +
u _ {j} ^ {[ k - 1] } ( x _ {0} )  = \
 +
\left \{
 +
 
 +
\begin{array}{ll}
 +
1  & \textrm{ if }  j = k,  \\
 +
0 & \textrm{ if }  j \neq k,  \\
 +
\end{array}
 +
 
 +
\right .$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d0327708.png" /> is a fixed point in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d0327709.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277010.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277011.png" />-th quasi-derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277012.png" />. Then, for any self-adjoint extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277013.png" /> of the operator generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277014.png" />, there exists a matrix-valued distribution function
+
where $  x _ {0} $
 +
is a fixed point in $  ( a, b) $
 +
and $  u _ {j} ^ {[ k - 1] } $
 +
is the $  ( k - 1) $-
 +
th quasi-derivative of $  u _ {j} $.  
 +
Then, for any self-adjoint extension $  L $
 +
of the operator generated by $  l ( y) $,  
 +
there exists a matrix-valued distribution function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277015.png" /></td> </tr></table>
+
$$
 +
\sigma ( \lambda )  = \
 +
( \sigma _ {jk} ( \lambda )),\ \
 +
j, k = 1 \dots 2n,
 +
$$
  
such that, for any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277016.png" />,
+
such that, for any function $  f \in L _ {2} ( a, b) $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\phi _ {j} ( \lambda )  = \
 +
\int\limits _ { a } ^ { b }  f ( x) u _ {j} ( x, \lambda ) dx,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277018.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
f ( x)  = \int\limits _ {- \infty } ^ {+ \infty } \sum _ {j, k = 1 } ^ { 2n }
 +
\phi _ {j} ( \lambda ) u _ {k} ( x, \lambda )  d \sigma _ {jk} ( \lambda ),
 +
$$
  
where the integrals in (1) and (2) are assumed to be convergent in the sense of the metrics in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277020.png" />, respectively. Under these assumptions, one has the following analogue of Parseval's equality:
+
where the integrals in (1) and (2) are assumed to be convergent in the sense of the metrics in $  L _ {2} ( \sigma ) $
 +
and $  L _ {2} ( a, b) $,
 +
respectively. Under these assumptions, one has the following analogue of Parseval's equality:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277021.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { a } ^ { b }
 +
| f ( x) |  ^ {2}  dx  = \
 +
\int\limits _ {- \infty } ^ { + \infty }
 +
\sum _ {j, k = 1 } ^ { 2n }
 +
\phi _ {j} ( \lambda ) \overline{ {\phi _ {k} ( \lambda ) }}\; \
 +
d \sigma _ {jk} ( \lambda ).
 +
$$
  
The functionals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277022.png" />, defined on functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277023.png" /> with compact support, are called the directing functionals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032770/d03277024.png" />.
+
The functionals $  \phi ( \lambda ) $,  
 +
defined on functions in $  L _ {2} ( a, b) $
 +
with compact support, are called the directing functionals of $  l ( y) $.
  
 
The generalization and further development of the method of directing functionals gave rise to the concept of rigged Hilbert spaces and generalized eigen element expansions (see [[#References|[4]]], [[#References|[5]]], [[#References|[6]]]).
 
The generalization and further development of the method of directing functionals gave rise to the concept of rigged Hilbert spaces and generalized eigen element expansions (see [[#References|[4]]], [[#References|[5]]], [[#References|[6]]]).

Latest revision as of 16:33, 14 January 2024


A special method for proving theorems about eigen function expansions of self-adjoint differential operators. In the special case of a second-order singular differential operator on the positive semi-axis, the corresponding theorem was first obtained by H. Weyl [1]. The general theorem for a differential operator of order $ 2n $ was first proved by M.G. Krein [2], who used the method now known as the method of directing functionals. The result may be formulated as follows (see [3]). Let $ l ( y) $ be a self-adjoint differential expression of order $ 2n $ on an interval $ ( a, b) $, let $ u _ {1} ( x, \lambda ) \dots u _ {2n} ( x, \lambda ) $ be the system of solutions of the equation

$$ l ( y) = \lambda y, $$

satisfying the initial conditions

$$ u _ {j} ^ {[ k - 1] } ( x _ {0} ) = \ \left \{ \begin{array}{ll} 1 & \textrm{ if } j = k, \\ 0 & \textrm{ if } j \neq k, \\ \end{array} \right .$$

where $ x _ {0} $ is a fixed point in $ ( a, b) $ and $ u _ {j} ^ {[ k - 1] } $ is the $ ( k - 1) $- th quasi-derivative of $ u _ {j} $. Then, for any self-adjoint extension $ L $ of the operator generated by $ l ( y) $, there exists a matrix-valued distribution function

$$ \sigma ( \lambda ) = \ ( \sigma _ {jk} ( \lambda )),\ \ j, k = 1 \dots 2n, $$

such that, for any function $ f \in L _ {2} ( a, b) $,

$$ \tag{1 } \phi _ {j} ( \lambda ) = \ \int\limits _ { a } ^ { b } f ( x) u _ {j} ( x, \lambda ) dx, $$

$$ \tag{2 } f ( x) = \int\limits _ {- \infty } ^ {+ \infty } \sum _ {j, k = 1 } ^ { 2n } \phi _ {j} ( \lambda ) u _ {k} ( x, \lambda ) d \sigma _ {jk} ( \lambda ), $$

where the integrals in (1) and (2) are assumed to be convergent in the sense of the metrics in $ L _ {2} ( \sigma ) $ and $ L _ {2} ( a, b) $, respectively. Under these assumptions, one has the following analogue of Parseval's equality:

$$ \int\limits _ { a } ^ { b } | f ( x) | ^ {2} dx = \ \int\limits _ {- \infty } ^ { + \infty } \sum _ {j, k = 1 } ^ { 2n } \phi _ {j} ( \lambda ) \overline{ {\phi _ {k} ( \lambda ) }}\; \ d \sigma _ {jk} ( \lambda ). $$

The functionals $ \phi ( \lambda ) $, defined on functions in $ L _ {2} ( a, b) $ with compact support, are called the directing functionals of $ l ( y) $.

The generalization and further development of the method of directing functionals gave rise to the concept of rigged Hilbert spaces and generalized eigen element expansions (see [4], [5], [6]).

References

[1] H. Weyl, "Ueber gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen" Math. Ann. , 68 (1910) pp. 220–269
[2] M.G. Krein, "On a general method for decomposing Hermitian positive kernels into elementary factors" Dokl. Akad. Nauk SSSR , 53 : 1 (1946) pp. 3–6 (In Russian)
[3] M.A. Naimark, "Lineare Differentialoperatoren" , Akademie Verlag (1960) (Translated from Russian)
[4] Yu.M. [Yu.M. Berezanskii] Berezanskiy, "Expansion in eigenfunctions of selfadjoint operators" , Amer. Math. Soc. (1968) (Translated from Russian)
[5] I.M. Gel'fand, G.E. Shilov, "Some problems in differential equations" , Moscow (1958) (In Russian)
[6] I.M. Gel'fand, N.Ya. Vilenkin, "Generalized functions. Applications of harmonic analysis" , 4 , Acad. Press (1964) (Translated from Russian)
[7] B.M. Levitan, "Eigenfunction expansions of second-order differential equations" , Moscow-Leningrad (1950) (In Russian)
How to Cite This Entry:
Directing functionals, method of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Directing_functionals,_method_of&oldid=13133
This article was adapted from an original article by A.I. Loginov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article