Namespaces
Variants
Actions

Difference between revisions of "Differentiation of a mapping"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
d0323301.png
 +
$#A+1 = 61 n = 0
 +
$#C+1 = 61 : ~/encyclopedia/old_files/data/D032/D.0302330 Differentiation of a mapping
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
Finding the differential or, in other words, the principal linear part (of increment) of the mapping. The finding of the differential, i.e. the approximation of the mapping in a neighbourhood of some point by linear mappings, is a highly important operation in differential calculus. A very general framework for differential calculus can be formulated in the setting of topological vector spaces.
 
Finding the differential or, in other words, the principal linear part (of increment) of the mapping. The finding of the differential, i.e. the approximation of the mapping in a neighbourhood of some point by linear mappings, is a highly important operation in differential calculus. A very general framework for differential calculus can be formulated in the setting of topological vector spaces.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d0323301.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d0323302.png" /> be topological vector spaces. Let a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d0323303.png" /> be defined on an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d0323304.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d0323305.png" /> and let it take values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d0323306.png" />. If the difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d0323307.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d0323308.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d0323309.png" />, can be approximated by a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233010.png" /> which is linear with respect to the increment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233011.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233012.png" /> is known as a differentiable mapping at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233013.png" />. The approximating linear function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233014.png" /> is said to be the derivative or the differential of the mapping at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233015.png" /> and is denoted by the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233016.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233017.png" />. Mappings with identical derivatives at a given point are said to be mutually tangent mappings at this point. The value of the approximating function on an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233018.png" />, denoted by the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233020.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233021.png" />, is known as the differential of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233022.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233023.png" /> for the increment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233024.png" />.
+
Let $  X $
 +
and $  Y $
 +
be topological vector spaces. Let a mapping $  f $
 +
be defined on an open subset $  V $
 +
of $  X $
 +
and let it take values in $  Y $.  
 +
If the difference $  f ( x _ {0} + h ) - f ( x _ {0} ) $,  
 +
where $  x _ {0} \in V $
 +
and $  x _ {0} + h \in V $,  
 +
can be approximated by a function $  l _ {x _ {0}  } : X \rightarrow Y $
 +
which is linear with respect to the increment $  h $,  
 +
then $  f $
 +
is known as a differentiable mapping at $  x _ {0} $.  
 +
The approximating linear function $  l _ {x _ {0}  } $
 +
is said to be the derivative or the differential of the mapping at $  x _ {0} $
 +
and is denoted by the symbol $  f ^ { \prime } ( x _ {0} ) $
 +
or $  df ( x _ {0} ) $.  
 +
Mappings with identical derivatives at a given point are said to be mutually tangent mappings at this point. The value of the approximating function on an element $  h \in X $,  
 +
denoted by the symbol $  f ^ { \prime } ( x _ {0} ) h $,
 +
d f ( x _ {0} ) ( h) $
 +
or  $  d _ {h} f ( x _ {0} ) $,  
 +
is known as the differential of the mapping $  f $
 +
at the point $  x _ {0} $
 +
for the increment $  h $.
  
Depending on the meaning attributed to the approximation of the increment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233025.png" /> by a linear expression in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233026.png" />, there result different concepts of differentiability and of the derivative. For the most important existing definitions see [[#References|[1]]], .
+
Depending on the meaning attributed to the approximation of the increment $  f ( x _ {0} + h ) - f ( x _ {0} ) $
 +
by a linear expression in $  h $,  
 +
there result different concepts of differentiability and of the derivative. For the most important existing definitions see [[#References|[1]]], .
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233027.png" /> be the set of all mappings from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233028.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233029.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233030.png" /> be some topology or pseudo-topology in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233031.png" />. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233032.png" /> is small at zero if the curve
+
Let $  F $
 +
be the set of all mappings from $  X $
 +
into $  Y $
 +
and let $  \tau $
 +
be some topology or pseudo-topology in $  F $.  
 +
A mapping $  r \in F $
 +
is small at zero if the curve
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233033.png" /></td> </tr></table>
+
$$
 +
r _ {t} :
 +
\frac{r ( t x ) }{t}
 +
,
 +
$$
  
 
conceived of as a mapping
 
conceived of as a mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233034.png" /></td> </tr></table>
+
$$
 +
t  \rightarrow  \left [ x \rightarrow
 +
\frac{r ( t x ) }{t}
 +
\right ]
 +
$$
  
of the straight line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233035.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233036.png" />, is continuous at zero in the (pseudo-) topology <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233037.png" />. Now, a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233038.png" /> is differentiable at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233039.png" /> if there exists a continuous linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233040.png" /> such that the mapping
+
of the straight line $  - \infty < t < \infty $
 +
into $  F $,  
 +
is continuous at zero in the (pseudo-) topology $  \tau $.  
 +
Now, a mapping $  f \in F $
 +
is differentiable at a point $  x _ {0} $
 +
if there exists a continuous linear mapping $  l _ {x _ {0}  } $
 +
such that the mapping
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233041.png" /></td> </tr></table>
+
$$
 +
r : h  \rightarrow  f ( x _ {0} + h ) - f ( x _ {0} ) - l _ {x _ {0}  } ( h)
 +
$$
  
is small at zero. Depending on the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233042.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233043.png" /> various definitions of derivatives are obtained. Thus, if the topology of pointwise convergence is selected for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233044.png" />, one obtains differentiability according to Gâteaux (cf. [[Gâteaux derivative|Gâteaux derivative]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233046.png" /> are Banach spaces and the topology in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233047.png" /> is the topology of uniform convergence on bounded sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233048.png" />, one obtains differentiability according to Fréchet (cf. [[Fréchet derivative|Fréchet derivative]]).
+
is small at zero. Depending on the choice of $  \tau $
 +
in $  F $
 +
various definitions of derivatives are obtained. Thus, if the topology of pointwise convergence is selected for $  \tau $,  
 +
one obtains differentiability according to Gâteaux (cf. [[Gâteaux derivative|Gâteaux derivative]]). If $  X $
 +
and $  Y $
 +
are Banach spaces and the topology in $  F $
 +
is the topology of uniform convergence on bounded sets in $  X $,  
 +
one obtains differentiability according to Fréchet (cf. [[Fréchet derivative|Fréchet derivative]]).
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233050.png" />, the derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233051.png" /> of a differentiable mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233052.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233053.png" />, is defined by the [[Jacobi matrix|Jacobi matrix]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233054.png" />, and is a continuous linear mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233055.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233056.png" />.
+
If $  X = \mathbf R  ^ {n} $
 +
and $  Y = \mathbf R  ^ {m} $,  
 +
the derivative $  f ^ { \prime } ( x _ {0} ) $
 +
of a differentiable mapping $  f ( x) = ( f _ {1} ( x) \dots f _ {m} ( x) ) $,  
 +
where $  x = ( x _ {1} \dots x _ {n} ) $,  
 +
is defined by the [[Jacobi matrix|Jacobi matrix]] $  \| \partial  f _ {i} ( x _ {0} ) / \partial  x _ {j} \| $,  
 +
and is a continuous linear mapping from $  \mathbf R  ^ {n} $
 +
into $  \mathbf R  ^ {m} $.
  
 
Derivatives of mappings display many of the properties of the derivatives of functions of one variable. For instance, under very general assumptions, they display the property of linearity:
 
Derivatives of mappings display many of the properties of the derivatives of functions of one variable. For instance, under very general assumptions, they display the property of linearity:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233057.png" /></td> </tr></table>
+
$$
 +
( f + g )  ^  \prime  ( x _ {0} )  = f ^ { \prime } ( x _ {0} ) + g  ^  \prime  ( x _ {0} ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233058.png" /></td> </tr></table>
+
$$
 +
( \alpha f  )  ^  \prime  ( x _ {0} )  = \alpha f ^ { \prime } ( x _ {0} ) ;
 +
$$
  
 
and in many cases the formula for differentiation of composite functions:
 
and in many cases the formula for differentiation of composite functions:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233059.png" /></td> </tr></table>
+
$$
 +
( f \circ g )  ^  \prime  ( x _ {0} )  = f ^ { \prime } ( g ( x _ {0} ) ) \circ g
 +
^  \prime  ( x _ {0} ) ,
 +
$$
  
 
is applicable; the generalized mean-value theorem of Lagrange is valid for mappings into locally convex spaces.
 
is applicable; the generalized mean-value theorem of Lagrange is valid for mappings into locally convex spaces.
  
The concept of a differentiable mapping is extended to the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032330/d03233061.png" /> are smooth differentiable manifolds, both finite-dimensional and infinite-dimensional [[#References|[4]]], [[#References|[5]]], [[#References|[6]]]. Differentiable mappings between infinite-dimensional spaces and their derivatives were defined for the first time by V. Volterra (1887), M. Fréchet (1911) and R. Gâteaux (1913). For a more detailed history of the development of the concept of a derivative in higher-dimensional spaces see .
+
The concept of a differentiable mapping is extended to the case when $  X $
 +
and $  Y $
 +
are smooth differentiable manifolds, both finite-dimensional and infinite-dimensional [[#References|[4]]], [[#References|[5]]], [[#References|[6]]]. Differentiable mappings between infinite-dimensional spaces and their derivatives were defined for the first time by V. Volterra (1887), M. Fréchet (1911) and R. Gâteaux (1913). For a more detailed history of the development of the concept of a derivative in higher-dimensional spaces see .
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Frölicher,  W. Bucher,  "Calculus in vector spaces without norm" , ''Lect. notes in math.'' , '''30''' , Springer  (1966)</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top">  V.I. Averbukh,  O.G. Smolyanov,  "The theory of differentiation in linear topological spaces"  ''Russian Math. Surveys'' , '''22''' :  6  (1967)  pp. 201–258  ''Uspekhi Mat. Nauk'' , '''22''' :  6  (1967)  pp. 201–260</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top">  V.I. Averbukh,  O.G. Smolyanov,  "The various definitions of the derivative in linear topological spaces"  ''Russian Math. Surveys'' , '''23''' :  4  (1968)  pp. 67–113  ''Uspekhi Mat. Nauk'' , '''23''' :  4  (1968)  pp. 67–116</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.A. Dieudonné,  "Foundations of modern analysis" , Acad. Press  (1961)  (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Lang,  "Introduction to differentiable manifolds" , Interscience  (1967)  pp. App. III</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Differentiable and analytic manifolds" , Addison-Wesley  (1966)  (Translated from French)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M. Spivak,  "Calculus on manifolds" , Benjamin  (1965)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Frölicher,  W. Bucher,  "Calculus in vector spaces without norm" , ''Lect. notes in math.'' , '''30''' , Springer  (1966)</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top">  V.I. Averbukh,  O.G. Smolyanov,  "The theory of differentiation in linear topological spaces"  ''Russian Math. Surveys'' , '''22''' :  6  (1967)  pp. 201–258  ''Uspekhi Mat. Nauk'' , '''22''' :  6  (1967)  pp. 201–260</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top">  V.I. Averbukh,  O.G. Smolyanov,  "The various definitions of the derivative in linear topological spaces"  ''Russian Math. Surveys'' , '''23''' :  4  (1968)  pp. 67–113  ''Uspekhi Mat. Nauk'' , '''23''' :  4  (1968)  pp. 67–116</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J.A. Dieudonné,  "Foundations of modern analysis" , Acad. Press  (1961)  (Translated from French)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  S. Lang,  "Introduction to differentiable manifolds" , Interscience  (1967)  pp. App. III</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Differentiable and analytic manifolds" , Addison-Wesley  (1966)  (Translated from French)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M. Spivak,  "Calculus on manifolds" , Benjamin  (1965)</TD></TR></table>

Latest revision as of 19:35, 5 June 2020


Finding the differential or, in other words, the principal linear part (of increment) of the mapping. The finding of the differential, i.e. the approximation of the mapping in a neighbourhood of some point by linear mappings, is a highly important operation in differential calculus. A very general framework for differential calculus can be formulated in the setting of topological vector spaces.

Let $ X $ and $ Y $ be topological vector spaces. Let a mapping $ f $ be defined on an open subset $ V $ of $ X $ and let it take values in $ Y $. If the difference $ f ( x _ {0} + h ) - f ( x _ {0} ) $, where $ x _ {0} \in V $ and $ x _ {0} + h \in V $, can be approximated by a function $ l _ {x _ {0} } : X \rightarrow Y $ which is linear with respect to the increment $ h $, then $ f $ is known as a differentiable mapping at $ x _ {0} $. The approximating linear function $ l _ {x _ {0} } $ is said to be the derivative or the differential of the mapping at $ x _ {0} $ and is denoted by the symbol $ f ^ { \prime } ( x _ {0} ) $ or $ df ( x _ {0} ) $. Mappings with identical derivatives at a given point are said to be mutually tangent mappings at this point. The value of the approximating function on an element $ h \in X $, denoted by the symbol $ f ^ { \prime } ( x _ {0} ) h $, $ d f ( x _ {0} ) ( h) $ or $ d _ {h} f ( x _ {0} ) $, is known as the differential of the mapping $ f $ at the point $ x _ {0} $ for the increment $ h $.

Depending on the meaning attributed to the approximation of the increment $ f ( x _ {0} + h ) - f ( x _ {0} ) $ by a linear expression in $ h $, there result different concepts of differentiability and of the derivative. For the most important existing definitions see [1], .

Let $ F $ be the set of all mappings from $ X $ into $ Y $ and let $ \tau $ be some topology or pseudo-topology in $ F $. A mapping $ r \in F $ is small at zero if the curve

$$ r _ {t} : \frac{r ( t x ) }{t} , $$

conceived of as a mapping

$$ t \rightarrow \left [ x \rightarrow \frac{r ( t x ) }{t} \right ] $$

of the straight line $ - \infty < t < \infty $ into $ F $, is continuous at zero in the (pseudo-) topology $ \tau $. Now, a mapping $ f \in F $ is differentiable at a point $ x _ {0} $ if there exists a continuous linear mapping $ l _ {x _ {0} } $ such that the mapping

$$ r : h \rightarrow f ( x _ {0} + h ) - f ( x _ {0} ) - l _ {x _ {0} } ( h) $$

is small at zero. Depending on the choice of $ \tau $ in $ F $ various definitions of derivatives are obtained. Thus, if the topology of pointwise convergence is selected for $ \tau $, one obtains differentiability according to Gâteaux (cf. Gâteaux derivative). If $ X $ and $ Y $ are Banach spaces and the topology in $ F $ is the topology of uniform convergence on bounded sets in $ X $, one obtains differentiability according to Fréchet (cf. Fréchet derivative).

If $ X = \mathbf R ^ {n} $ and $ Y = \mathbf R ^ {m} $, the derivative $ f ^ { \prime } ( x _ {0} ) $ of a differentiable mapping $ f ( x) = ( f _ {1} ( x) \dots f _ {m} ( x) ) $, where $ x = ( x _ {1} \dots x _ {n} ) $, is defined by the Jacobi matrix $ \| \partial f _ {i} ( x _ {0} ) / \partial x _ {j} \| $, and is a continuous linear mapping from $ \mathbf R ^ {n} $ into $ \mathbf R ^ {m} $.

Derivatives of mappings display many of the properties of the derivatives of functions of one variable. For instance, under very general assumptions, they display the property of linearity:

$$ ( f + g ) ^ \prime ( x _ {0} ) = f ^ { \prime } ( x _ {0} ) + g ^ \prime ( x _ {0} ) , $$

$$ ( \alpha f ) ^ \prime ( x _ {0} ) = \alpha f ^ { \prime } ( x _ {0} ) ; $$

and in many cases the formula for differentiation of composite functions:

$$ ( f \circ g ) ^ \prime ( x _ {0} ) = f ^ { \prime } ( g ( x _ {0} ) ) \circ g ^ \prime ( x _ {0} ) , $$

is applicable; the generalized mean-value theorem of Lagrange is valid for mappings into locally convex spaces.

The concept of a differentiable mapping is extended to the case when $ X $ and $ Y $ are smooth differentiable manifolds, both finite-dimensional and infinite-dimensional [4], [5], [6]. Differentiable mappings between infinite-dimensional spaces and their derivatives were defined for the first time by V. Volterra (1887), M. Fréchet (1911) and R. Gâteaux (1913). For a more detailed history of the development of the concept of a derivative in higher-dimensional spaces see .

References

[1] A. Frölicher, W. Bucher, "Calculus in vector spaces without norm" , Lect. notes in math. , 30 , Springer (1966)
[2a] V.I. Averbukh, O.G. Smolyanov, "The theory of differentiation in linear topological spaces" Russian Math. Surveys , 22 : 6 (1967) pp. 201–258 Uspekhi Mat. Nauk , 22 : 6 (1967) pp. 201–260
[2b] V.I. Averbukh, O.G. Smolyanov, "The various definitions of the derivative in linear topological spaces" Russian Math. Surveys , 23 : 4 (1968) pp. 67–113 Uspekhi Mat. Nauk , 23 : 4 (1968) pp. 67–116
[3] J.A. Dieudonné, "Foundations of modern analysis" , Acad. Press (1961) (Translated from French)
[4] S. Lang, "Introduction to differentiable manifolds" , Interscience (1967) pp. App. III
[5] N. Bourbaki, "Elements of mathematics. Differentiable and analytic manifolds" , Addison-Wesley (1966) (Translated from French)
[6] M. Spivak, "Calculus on manifolds" , Benjamin (1965)
How to Cite This Entry:
Differentiation of a mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Differentiation_of_a_mapping&oldid=14853
This article was adapted from an original article by O.G. SmolyanovV.I. SobolevV.M. Tikhomirov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article