Namespaces
Variants
Actions

Difference between revisions of "Differentiation along the flow of a dynamical system"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
d0323101.png
 +
$#A+1 = 35 n = 0
 +
$#C+1 = 35 : ~/encyclopedia/old_files/data/D032/D.0302310 Differentiation along the flow of a dynamical system
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An operator defined as follows. Let
 
An operator defined as follows. Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d0323101.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
\dot{x}  = f ( x)
 +
$$
  
be an [[Autonomous system|autonomous system]], let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d0323102.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d0323103.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d0323104.png" /> be smooth mappings, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d0323105.png" /> is a domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d0323106.png" />. Let a smooth mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d0323107.png" /> be given. The derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d0323108.png" /> along the flow of the system (*) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d0323109.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231010.png" /> is defined by
+
be an [[Autonomous system|autonomous system]], let $  x \in \mathbf R  ^ {n} $,  
 +
let $  f = ( f _ {1} \dots f _ {n} ) $,  
 +
and let $  f _ {j} : G \rightarrow \mathbf R $
 +
be smooth mappings, where $  G $
 +
is a domain in $  \mathbf R  ^ {n} $.  
 +
Let a smooth mapping $  \phi : G \rightarrow \mathbf R $
 +
be given. The derivative $  \theta _ {f} \phi $
 +
along the flow of the system (*) of $  \phi $
 +
at a point $  x  ^ {0} \in G $
 +
is defined by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231011.png" /></td> </tr></table>
+
$$
 +
\left . ( \theta _ {f} \phi ) x  ^ {0}  = \sum _ {j = 1 } ^ { n }
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231012.png" /> is a solution of the system (*) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231013.png" />. The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231014.png" /> displays the following properties: 1) linearity in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231015.png" />; and 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231016.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231017.png" /> coincides with the derivative of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231018.png" /> with respect to the vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231019.png" />.
+
\frac{\partial  \phi ( x  ^ {0} ) }{\partial  x _ {j} }
 +
f _ {j} ( x  ^ {0} )
 +
=
 +
\frac{d}{dt}
 +
( \phi ( x ( t , x  ^ {0} ) ) ) \right | _ {t = t  ^ {0}  } ,
 +
$$
 +
 
 +
where  $  x ( t , x  ^ {0} ) $
 +
is a solution of the system (*) such that $  x ( t  ^ {0} , x  ^ {0} ) = x  ^ {0} $.  
 +
The operator $  \theta _ {f} $
 +
displays the following properties: 1) linearity in $  \phi $;  
 +
and 2) $  \theta _ {f} ( \phi _ {1} \phi _ {2} ) = \phi _ {1} \theta _ {f} \phi _ {2} + \phi _ {2} \theta _ {f} \phi _ {1} $.  
 +
The function $  ( \theta _ {f} \phi ) ( x) $
 +
coincides with the derivative of $  \phi $
 +
with respect to the vector field $  f $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
In terms of the canonical basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231020.png" /> of the tangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231021.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231022.png" />, the vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231023.png" /> is written
+
In terms of the canonical basis $  ( \partial  / {\partial  x _ {1} } \dots \partial  / {\partial  x _ {n} } ) $
 +
of the tangent space $  T _ {x} \mathbf R  ^ {n} $
 +
at a point $  x $,  
 +
the vector field $  f $
 +
is written
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231024.png" /></td> </tr></table>
+
$$
 +
\sum f _ {j} ( x)
 +
\frac \partial {\partial  x _ {j} }
 +
.
 +
$$
  
This first-order differential operator defines a derivation of the ring (cf. [[Derivation in a ring|Derivation in a ring]]) of smooth functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231025.png" /> into itself. Moreover, this sets up a bijective correspondence between vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231026.png" /> and derivations on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231027.png" />. Using local coordinates this extends to the case of smooth differentiable manifolds. And indeed it is quite customary to define vector fields on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231028.png" /> as derivations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231029.png" /> and to observe subsequently that the notion corresponds to a section of the tangent bundle. In this setting a tangent vector at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231030.png" /> can be defined as a derivation on the local algebra of germs of smooth functions at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231031.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231032.png" />. Thus, differentiation along the flow of a dynamical system given by the vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231033.png" /> simply means applying the derivation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231034.png" /> given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d032/d032310/d03231035.png" />.
+
This first-order differential operator defines a derivation of the ring (cf. [[Derivation in a ring|Derivation in a ring]]) of smooth functions $  C  ^  \infty  ( \mathbf R  ^ {n} ) $
 +
into itself. Moreover, this sets up a bijective correspondence between vector fields on $  \mathbf R  ^ {n} $
 +
and derivations on $  C  ^  \infty  ( \mathbf R  ^ {n} ) $.  
 +
Using local coordinates this extends to the case of smooth differentiable manifolds. And indeed it is quite customary to define vector fields on a manifold $  M $
 +
as derivations of $  C  ^  \infty  ( M) $
 +
and to observe subsequently that the notion corresponds to a section of the tangent bundle. In this setting a tangent vector at $  x \in M $
 +
can be defined as a derivation on the local algebra of germs of smooth functions at $  x $
 +
on $  M $.  
 +
Thus, differentiation along the flow of a dynamical system given by the vector field $  f $
 +
simply means applying the derivation on $  C  ^  \infty  ( M) $
 +
given by $  f $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  Y. Choquet-Bruhat,  C. DeWitt-Morette,  M. Dillard-Bleick,  "Analysis, manifolds and physics" , North-Holland  (1977)  pp. Sect. III.B  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  Y. Choquet-Bruhat,  C. DeWitt-Morette,  M. Dillard-Bleick,  "Analysis, manifolds and physics" , North-Holland  (1977)  pp. Sect. III.B  (Translated from French)</TD></TR></table>

Latest revision as of 19:35, 5 June 2020


An operator defined as follows. Let

$$ \tag{* } \dot{x} = f ( x) $$

be an autonomous system, let $ x \in \mathbf R ^ {n} $, let $ f = ( f _ {1} \dots f _ {n} ) $, and let $ f _ {j} : G \rightarrow \mathbf R $ be smooth mappings, where $ G $ is a domain in $ \mathbf R ^ {n} $. Let a smooth mapping $ \phi : G \rightarrow \mathbf R $ be given. The derivative $ \theta _ {f} \phi $ along the flow of the system (*) of $ \phi $ at a point $ x ^ {0} \in G $ is defined by

$$ \left . ( \theta _ {f} \phi ) x ^ {0} = \sum _ {j = 1 } ^ { n } \frac{\partial \phi ( x ^ {0} ) }{\partial x _ {j} } f _ {j} ( x ^ {0} ) = \frac{d}{dt} ( \phi ( x ( t , x ^ {0} ) ) ) \right | _ {t = t ^ {0} } , $$

where $ x ( t , x ^ {0} ) $ is a solution of the system (*) such that $ x ( t ^ {0} , x ^ {0} ) = x ^ {0} $. The operator $ \theta _ {f} $ displays the following properties: 1) linearity in $ \phi $; and 2) $ \theta _ {f} ( \phi _ {1} \phi _ {2} ) = \phi _ {1} \theta _ {f} \phi _ {2} + \phi _ {2} \theta _ {f} \phi _ {1} $. The function $ ( \theta _ {f} \phi ) ( x) $ coincides with the derivative of $ \phi $ with respect to the vector field $ f $.

References

[1] L.S. Pontryagin, "Ordinary differential equations" , Addison-Wesley (1962) (Translated from Russian)

Comments

In terms of the canonical basis $ ( \partial / {\partial x _ {1} } \dots \partial / {\partial x _ {n} } ) $ of the tangent space $ T _ {x} \mathbf R ^ {n} $ at a point $ x $, the vector field $ f $ is written

$$ \sum f _ {j} ( x) \frac \partial {\partial x _ {j} } . $$

This first-order differential operator defines a derivation of the ring (cf. Derivation in a ring) of smooth functions $ C ^ \infty ( \mathbf R ^ {n} ) $ into itself. Moreover, this sets up a bijective correspondence between vector fields on $ \mathbf R ^ {n} $ and derivations on $ C ^ \infty ( \mathbf R ^ {n} ) $. Using local coordinates this extends to the case of smooth differentiable manifolds. And indeed it is quite customary to define vector fields on a manifold $ M $ as derivations of $ C ^ \infty ( M) $ and to observe subsequently that the notion corresponds to a section of the tangent bundle. In this setting a tangent vector at $ x \in M $ can be defined as a derivation on the local algebra of germs of smooth functions at $ x $ on $ M $. Thus, differentiation along the flow of a dynamical system given by the vector field $ f $ simply means applying the derivation on $ C ^ \infty ( M) $ given by $ f $.

References

[a1] Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, "Analysis, manifolds and physics" , North-Holland (1977) pp. Sect. III.B (Translated from French)
How to Cite This Entry:
Differentiation along the flow of a dynamical system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Differentiation_along_the_flow_of_a_dynamical_system&oldid=18037
This article was adapted from an original article by M.V. Fedoryuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article