Namespaces
Variants
Actions

Difference between revisions of "Degenerate equilibrium position"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of a system of ordinary differential equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030770/d0307701.png" />''
+
<!--
 +
d0307701.png
 +
$#A+1 = 7 n = 0
 +
$#C+1 = 7 : ~/encyclopedia/old_files/data/D030/D.0300770 Degenerate equilibrium position
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030770/d0307702.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030770/d0307703.png" /> and for which the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030770/d0307704.png" /> has zero eigen values. The most extensively investigated degenerate equilibrium positions are those of two-dimensional systems, for which several methods for studying the behaviour of trajectories in a neighbourhood of this position are available; these include the methods of I. Bendixson [[#References|[1]]], [[#References|[2]]], [[#References|[4]]] and of M. Frommer [[#References|[3]]], [[#References|[4]]]. Geometric methods of investigation have been recommended in spaces of more than two dimensions; these consist, in essence, in isolating the main terms at the right-hand sides of the equations and demonstrating that the behaviour of the trajectory remains unchanged on passing from the abbreviated to the complete equation [[#References|[5]]]. If the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030770/d0307705.png" /> is sufficiently often differentiable or analytic, the degree of degeneracy of the equilibrium position may be considered equal to the number of non-degenerate equilibrium positions into which the given degenerate equilibrium position may be subdivided as a result of a change in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030770/d0307706.png" /> which is small in the sense of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d030/d030770/d0307707.png" />-topology.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''of a system of ordinary differential equations  $  \dot{x} = f( x) $''
 +
 
 +
A point $  x _ {0} $
 +
for which $  f ( x _ {0} ) = 0 $
 +
and for which the matrix $  ( \partial  f / \partial  x) ( x _ {0} ) $
 +
has zero eigen values. The most extensively investigated degenerate equilibrium positions are those of two-dimensional systems, for which several methods for studying the behaviour of trajectories in a neighbourhood of this position are available; these include the methods of I. Bendixson [[#References|[1]]], [[#References|[2]]], [[#References|[4]]] and of M. Frommer [[#References|[3]]], [[#References|[4]]]. Geometric methods of investigation have been recommended in spaces of more than two dimensions; these consist, in essence, in isolating the main terms at the right-hand sides of the equations and demonstrating that the behaviour of the trajectory remains unchanged on passing from the abbreviated to the complete equation [[#References|[5]]]. If the mapping $  f $
 +
is sufficiently often differentiable or analytic, the degree of degeneracy of the equilibrium position may be considered equal to the number of non-degenerate equilibrium positions into which the given degenerate equilibrium position may be subdivided as a result of a change in $  f $
 +
which is small in the sense of the $  C  ^ {r} $-
 +
topology.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I. Bendixson,  "Sur les courbes définies par des équations différentielles"  ''Acta Math.'' , '''24'''  (1901)  pp. 1–88</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.A. Andronov,  E.A. Leontovich,  I.I. Gordon,  A.G. Maier,  "Qualitative theory of second-order dynamic systems" , Wiley  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Frommer,  "Die Integralkurven einer gewöhnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimmtheitsstellen"  ''Math. Ann.'' , '''99'''  (1928)  pp. 222–272</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.V. Nemytskii,  V.V. Stepanov,  "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.A. Bryuno,  "Stepwise asymptotic solutions of non-linear systems"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''29'''  (1965)  pp. 329–364  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I. Bendixson,  "Sur les courbes définies par des équations différentielles"  ''Acta Math.'' , '''24'''  (1901)  pp. 1–88</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.A. Andronov,  E.A. Leontovich,  I.I. Gordon,  A.G. Maier,  "Qualitative theory of second-order dynamic systems" , Wiley  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M. Frommer,  "Die Integralkurven einer gewöhnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimmtheitsstellen"  ''Math. Ann.'' , '''99'''  (1928)  pp. 222–272</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V.V. Nemytskii,  V.V. Stepanov,  "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  A.A. Bryuno,  "Stepwise asymptotic solutions of non-linear systems"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''29'''  (1965)  pp. 329–364  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 17:32, 5 June 2020


of a system of ordinary differential equations $ \dot{x} = f( x) $

A point $ x _ {0} $ for which $ f ( x _ {0} ) = 0 $ and for which the matrix $ ( \partial f / \partial x) ( x _ {0} ) $ has zero eigen values. The most extensively investigated degenerate equilibrium positions are those of two-dimensional systems, for which several methods for studying the behaviour of trajectories in a neighbourhood of this position are available; these include the methods of I. Bendixson [1], [2], [4] and of M. Frommer [3], [4]. Geometric methods of investigation have been recommended in spaces of more than two dimensions; these consist, in essence, in isolating the main terms at the right-hand sides of the equations and demonstrating that the behaviour of the trajectory remains unchanged on passing from the abbreviated to the complete equation [5]. If the mapping $ f $ is sufficiently often differentiable or analytic, the degree of degeneracy of the equilibrium position may be considered equal to the number of non-degenerate equilibrium positions into which the given degenerate equilibrium position may be subdivided as a result of a change in $ f $ which is small in the sense of the $ C ^ {r} $- topology.

References

[1] I. Bendixson, "Sur les courbes définies par des équations différentielles" Acta Math. , 24 (1901) pp. 1–88
[2] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)
[3] M. Frommer, "Die Integralkurven einer gewöhnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimmtheitsstellen" Math. Ann. , 99 (1928) pp. 222–272
[4] V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)
[5] A.A. Bryuno, "Stepwise asymptotic solutions of non-linear systems" Izv. Akad. Nauk SSSR Ser. Mat. , 29 (1965) pp. 329–364 (In Russian)

Comments

See also Frommer method for the study of the behaviour of trajectories in a neighbourhood of an equilibrium position.

References

[a1] M.W. Hirsch, S. Smale, "Differential equations, dynamical systems, and linear algebra" , Acad. Press (1974)
[a2] J.K. Hale, "Ordinary differential equations" , Wiley (1980)
How to Cite This Entry:
Degenerate equilibrium position. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Degenerate_equilibrium_position&oldid=12106
This article was adapted from an original article by L.E. Reizin' (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article