Namespaces
Variants
Actions

Difference between revisions of "Congruence modulo a double modulus"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248901.png" />, congruence relative to a double modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248902.png" />''
+
<!--
 +
c0248901.png
 +
$#A+1 = 64 n = 0
 +
$#C+1 = 64 : ~/encyclopedia/old_files/data/C024/C.0204890 Congruence modulo a double modulus
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A relation between integral polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248903.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248904.png" /> of the form
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248905.png" /></td> </tr></table>
+
'' $  ( p, f( x)) $,
 +
congruence relative to a double modulus  $  ( p, f ( x)) $''
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248906.png" /> is a prime number, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248907.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248908.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c0248909.png" /> are polynomials with integer rational coefficients. In other words, the polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489011.png" /> with rational coefficients are called congruent modulo the double modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489012.png" /> if the difference <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489013.png" /> between them is divisible by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489014.png" /> modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489015.png" />. In order to denote the congruence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489017.png" /> modulo the double modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489018.png" />, the symbol
+
A relation between integral polynomials  $  a( x) $
 +
and $  b( x) $
 +
of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489019.png" /></td> </tr></table>
+
$$
 +
a( x) - b( x)  = f( x) g( x) + ph( x),
 +
$$
 +
 
 +
where  $  p $
 +
is a prime number, while  $  f( x) = x  ^ {n} + \dots + \alpha _ {n} $,
 +
$  g( x) $
 +
and  $  h( x) $
 +
are polynomials with integer rational coefficients. In other words, the polynomials  $  a( x) $
 +
and  $  b( x) $
 +
with rational coefficients are called congruent modulo the double modulus  $  ( p, f( x)) $
 +
if the difference  $  a( x) - b( x) $
 +
between them is divisible by  $  f( x) $
 +
modulo  $  p $.  
 +
In order to denote the congruence of  $  a( x) $
 +
and  $  b( x) $
 +
modulo the double modulus  $  ( p, f( x)) $,
 +
the symbol
 +
 
 +
$$
 +
a( x)  \equiv  b( x)  (  \mathop{\rm mod}  ( p, f( x)))
 +
$$
  
 
is used. This symbol, as well as the actual concept of a congruence modulo a double modulus, was introduced by R. Dedekind.
 
is used. This symbol, as well as the actual concept of a congruence modulo a double modulus, was introduced by R. Dedekind.
  
A congruence modulo a double modulus is an equivalence relation on the set of all integral polynomials and, consequently, divides this set into non-intersecting classes, called residue classes modulo the double modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489020.png" />. Since every polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489021.png" /> is congruent modulo the double modulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489022.png" /> to one and only one polynomial of the form
+
A congruence modulo a double modulus is an equivalence relation on the set of all integral polynomials and, consequently, divides this set into non-intersecting classes, called residue classes modulo the double modulus $  ( p, f( x)) $.  
 +
Since every polynomial $  a( x) $
 +
is congruent modulo the double modulus $  ( p, f( x)) $
 +
to one and only one polynomial of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489023.png" /></td> </tr></table>
+
$$
 +
\beta _ {1} x  ^ {n-} 1 + \beta _ {2} x  ^ {n-} 2 + \dots + \beta _ {n} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489024.png" /> run independently of each other through a complete residue system modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489025.png" />, there are exactly <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489026.png" /> residue classes modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489027.png" />.
+
where $  \beta _ {1} \dots \beta _ {n} $
 +
run independently of each other through a complete residue system modulo $  p $,  
 +
there are exactly $  p  ^ {n} $
 +
residue classes modulo $  ( p, f ( x)) $.
  
 
Congruences modulo a double modulus can be added, subtracted and multiplied in the same way as normal congruences. These operations induce similar operations on the residue classes modulo a double modulus, thus transforming the set of residue classes into a commutative ring.
 
Congruences modulo a double modulus can be added, subtracted and multiplied in the same way as normal congruences. These operations induce similar operations on the residue classes modulo a double modulus, thus transforming the set of residue classes into a commutative ring.
  
The ring of residue classes modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489028.png" /> is the quotient ring of the ring of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489029.png" /> with coefficients from a finite prime field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489030.png" /> by the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489031.png" /> generated by the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489032.png" />, obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489033.png" /> by reduction modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489034.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489035.png" /> is irreducible modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489036.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489037.png" /> is a maximal ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489038.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489039.png" /> is a field consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489040.png" /> elements (an extension of degree n of the prime field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489041.png" />).
+
The ring of residue classes modulo $  ( p, f( x)) $
 +
is the quotient ring of the ring of polynomials $  K _ {p} [ x] $
 +
with coefficients from a finite prime field $  K _ {p} $
 +
by the ideal $  ( \overline{f}\; ( x)) $
 +
generated by the polynomial $  \overline{f}\; ( x) $,  
 +
obtained from $  f( x) $
 +
by reduction modulo $  p $.  
 +
In particular, if $  f( x) $
 +
is irreducible modulo $  p $,  
 +
then $  ( \overline{f}\; ( x)) $
 +
is a maximal ideal in $  K _ {p} [ x] $,  
 +
and $  K _ {p} [ x]/( \overline{f}\; ( x)) $
 +
is a field consisting of $  p  ^ {n} $
 +
elements (an extension of degree n of the prime field $  K _ {p} $).
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489042.png" /> is irreducible modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489043.png" />, then for congruences modulo a double modulus, the analogue of the [[Fermat little theorem|Fermat little theorem]] holds:
+
If $  f( x) $
 +
is irreducible modulo $  p $,  
 +
then for congruences modulo a double modulus, the analogue of the [[Fermat little theorem|Fermat little theorem]] holds:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489044.png" /></td> </tr></table>
+
$$
 +
a( x) ^ {p  ^ {n} }  \equiv  a( x)  (  \mathop{\rm mod}  ( p, f( x))),
 +
$$
  
 
as does the [[Lagrange theorem|Lagrange theorem]]: The congruence
 
as does the [[Lagrange theorem|Lagrange theorem]]: The congruence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489045.png" /></td> </tr></table>
+
$$
 +
z  ^ {m} + a _ {1} ( x) z  ^ {m-} 1 + \dots + a _ {m} ( x)  \equiv  0 (
 +
\mathop{\rm mod}  ( p, f( x))),
 +
$$
  
the coefficients of which are integral polynomials, has not more than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489046.png" /> incongruent solutions modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489047.png" />. From these theorems it is possible to deduce that
+
the coefficients of which are integral polynomials, has not more than $  m $
 +
incongruent solutions modulo $  ( p, f( x)) $.  
 +
From these theorems it is possible to deduce that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489048.png" /></td> </tr></table>
+
$$
 +
x ^ {p  ^ {n} } - = \prod _ { d\mid  } n \Phi _ {d} ( x)  (  \mathop{\rm mod}  p),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489049.png" /> is the product of all possible different, normalized (i.e. with leading coefficient 1), irreducible polynomials modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489050.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489051.png" />. If the number of different, normalized, irreducible polynomials modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489052.png" /> of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489053.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489054.png" />, then
+
where $  \Phi _ {d} ( x) $
 +
is the product of all possible different, normalized (i.e. with leading coefficient 1), irreducible polynomials modulo $  p $
 +
of degree $  d $.  
 +
If the number of different, normalized, irreducible polynomials modulo $  p $
 +
of degree $  n $
 +
is denoted by $  ( n) $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489055.png" /></td> </tr></table>
+
$$
 +
( n)  =
 +
\frac{1}{n}
 +
\sum _ { d\mid  } n \mu ( d) p  ^ {n/d} ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489056.png" /> is the [[Möbius function|Möbius function]] and, in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489057.png" /> for any natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489058.png" />. Consequently there exists, for any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489059.png" />, a finite field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489060.png" /> consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489061.png" /> elements that is an extension of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489062.png" /> of the residue field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489063.png" /> modulo the prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c024/c024890/c02489064.png" />.
+
where $  \mu ( d) $
 +
is the [[Möbius function|Möbius function]] and, in particular, $  ( n) > 0 $
 +
for any natural number $  n $.  
 +
Consequently there exists, for any integer $  n > 0 $,  
 +
a finite field $  K _ {q} $
 +
consisting of $  p  ^ {n} $
 +
elements that is an extension of degree $  n $
 +
of the residue field $  K _ {p} $
 +
modulo the prime number $  p $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Venkov,  "Elementary number theory" , Wolters-Noordhoff  (1970)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Venkov,  "Elementary number theory" , Wolters-Noordhoff  (1970)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.H. Hardy,  E.M. Wright,  "An introduction to the theory of numbers" , Oxford Univ. Press  (1979)  pp. Chapts. 5; 7; 8</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.H. Hardy,  E.M. Wright,  "An introduction to the theory of numbers" , Oxford Univ. Press  (1979)  pp. Chapts. 5; 7; 8</TD></TR></table>

Revision as of 17:46, 4 June 2020


$ ( p, f( x)) $, congruence relative to a double modulus $ ( p, f ( x)) $

A relation between integral polynomials $ a( x) $ and $ b( x) $ of the form

$$ a( x) - b( x) = f( x) g( x) + ph( x), $$

where $ p $ is a prime number, while $ f( x) = x ^ {n} + \dots + \alpha _ {n} $, $ g( x) $ and $ h( x) $ are polynomials with integer rational coefficients. In other words, the polynomials $ a( x) $ and $ b( x) $ with rational coefficients are called congruent modulo the double modulus $ ( p, f( x)) $ if the difference $ a( x) - b( x) $ between them is divisible by $ f( x) $ modulo $ p $. In order to denote the congruence of $ a( x) $ and $ b( x) $ modulo the double modulus $ ( p, f( x)) $, the symbol

$$ a( x) \equiv b( x) ( \mathop{\rm mod} ( p, f( x))) $$

is used. This symbol, as well as the actual concept of a congruence modulo a double modulus, was introduced by R. Dedekind.

A congruence modulo a double modulus is an equivalence relation on the set of all integral polynomials and, consequently, divides this set into non-intersecting classes, called residue classes modulo the double modulus $ ( p, f( x)) $. Since every polynomial $ a( x) $ is congruent modulo the double modulus $ ( p, f( x)) $ to one and only one polynomial of the form

$$ \beta _ {1} x ^ {n-} 1 + \beta _ {2} x ^ {n-} 2 + \dots + \beta _ {n} , $$

where $ \beta _ {1} \dots \beta _ {n} $ run independently of each other through a complete residue system modulo $ p $, there are exactly $ p ^ {n} $ residue classes modulo $ ( p, f ( x)) $.

Congruences modulo a double modulus can be added, subtracted and multiplied in the same way as normal congruences. These operations induce similar operations on the residue classes modulo a double modulus, thus transforming the set of residue classes into a commutative ring.

The ring of residue classes modulo $ ( p, f( x)) $ is the quotient ring of the ring of polynomials $ K _ {p} [ x] $ with coefficients from a finite prime field $ K _ {p} $ by the ideal $ ( \overline{f}\; ( x)) $ generated by the polynomial $ \overline{f}\; ( x) $, obtained from $ f( x) $ by reduction modulo $ p $. In particular, if $ f( x) $ is irreducible modulo $ p $, then $ ( \overline{f}\; ( x)) $ is a maximal ideal in $ K _ {p} [ x] $, and $ K _ {p} [ x]/( \overline{f}\; ( x)) $ is a field consisting of $ p ^ {n} $ elements (an extension of degree n of the prime field $ K _ {p} $).

If $ f( x) $ is irreducible modulo $ p $, then for congruences modulo a double modulus, the analogue of the Fermat little theorem holds:

$$ a( x) ^ {p ^ {n} } \equiv a( x) ( \mathop{\rm mod} ( p, f( x))), $$

as does the Lagrange theorem: The congruence

$$ z ^ {m} + a _ {1} ( x) z ^ {m-} 1 + \dots + a _ {m} ( x) \equiv 0 ( \mathop{\rm mod} ( p, f( x))), $$

the coefficients of which are integral polynomials, has not more than $ m $ incongruent solutions modulo $ ( p, f( x)) $. From these theorems it is possible to deduce that

$$ x ^ {p ^ {n} } - x = \prod _ { d\mid } n \Phi _ {d} ( x) ( \mathop{\rm mod} p), $$

where $ \Phi _ {d} ( x) $ is the product of all possible different, normalized (i.e. with leading coefficient 1), irreducible polynomials modulo $ p $ of degree $ d $. If the number of different, normalized, irreducible polynomials modulo $ p $ of degree $ n $ is denoted by $ ( n) $, then

$$ ( n) = \frac{1}{n} \sum _ { d\mid } n \mu ( d) p ^ {n/d} , $$

where $ \mu ( d) $ is the Möbius function and, in particular, $ ( n) > 0 $ for any natural number $ n $. Consequently there exists, for any integer $ n > 0 $, a finite field $ K _ {q} $ consisting of $ p ^ {n} $ elements that is an extension of degree $ n $ of the residue field $ K _ {p} $ modulo the prime number $ p $.

References

[1] B.A. Venkov, "Elementary number theory" , Wolters-Noordhoff (1970) (Translated from Russian)

Comments

References

[a1] G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers" , Oxford Univ. Press (1979) pp. Chapts. 5; 7; 8
How to Cite This Entry:
Congruence modulo a double modulus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Congruence_modulo_a_double_modulus&oldid=15424
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article