Namespaces
Variants
Actions

Difference between revisions of "Character of an associative algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216001.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216002.png" />''
+
<!--
 +
c0216001.png
 +
$#A+1 = 55 n = 0
 +
$#C+1 = 55 : ~/encyclopedia/old_files/data/C021/C.0201600 Character of an associative algebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A non-zero homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216003.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216004.png" />. A character of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216005.png" /> is sometimes also called a multiplicative functional on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216006.png" />. Every character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216007.png" /> is surjective and has the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216008.png" />. The kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c0216009.png" /> is a maximal ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160010.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160011.png" /> is a finitely generated commutative algebra and if the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160012.png" /> is algebraically closed, then any maximal ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160013.png" /> is the kernel of a unique character, so that the correspondence between characters and maximal ideals is bijective. The collection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160014.png" /> of all characters of a commutative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160015.png" />, its so-called maximal spectrum, has the natural structure of an [[Affine variety|affine variety]]. Every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160016.png" /> determines a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160017.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160018.png" />, given by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160019.png" />, and the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160020.png" /> form the algebra of regular functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160021.png" />. Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160022.png" /> is an affine variety and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160023.png" /> is the algebra of regular functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160024.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160025.png" /> can be identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160026.png" />: To every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160027.png" /> corresponds the character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160028.png" /> defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160029.png" />.
+
'' $  A $
 +
over a field $  k $''
  
The characters of a commutative Banach algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160030.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160031.png" /> have similar properties. Every character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160032.png" /> is continuous and has norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160033.png" />. Every maximal ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160034.png" /> is the kernel of a unique character of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160035.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160036.png" /> of all characters, regarded as a subset of the unit ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160037.png" /> endowed with the weak topology, is compact and is called the spectrum of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160038.png" />, and there is a natural homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160039.png" /> into the algebra of continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160040.png" />. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160041.png" /> is the algebra of all complex-valued continuous functions on a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160042.png" />, equipped with the norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160043.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160044.png" /> can be identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160045.png" />: To every element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160046.png" /> corresponds the character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160047.png" /> defined by the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160049.png" />. A character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160050.png" /> of a symmetric commutative Banach algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160051.png" /> is called Hermitian if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160052.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160053.png" />); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160054.png" /> is Hermitian if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021600/c02160055.png" /> is a symmetric maximal ideal.
+
A non-zero homomorphism of  $  A $
 +
into  $  k $.
 +
A character of the algebra  $  A $
 +
is sometimes also called a multiplicative functional on  $  A $.
 +
Every character  $  \chi :  A \rightarrow k $
 +
is surjective and has the property  $  \chi ( 1) = 1 $.
 +
The kernel  $  \mathop{\rm Ker}  \chi $
 +
is a maximal ideal in  $  A $.
 +
 
 +
If  $  A $
 +
is a finitely generated commutative algebra and if the field  $  k $
 +
is algebraically closed, then any maximal ideal in  $  A $
 +
is the kernel of a unique character, so that the correspondence between characters and maximal ideals is bijective. The collection  $  \mathop{\rm Specm}  A $
 +
of all characters of a commutative algebra $  A $,
 +
its so-called maximal spectrum, has the natural structure of an [[Affine variety|affine variety]]. Every element  $  a \in A $
 +
determines a function  $  \widetilde{a}  $
 +
on  $  \mathop{\rm Specm}  A $,
 +
given by the formula  $  \widetilde{a}  ( \chi ) = \chi ( a) $,
 +
and the functions  $  \widetilde{a}  $
 +
form the algebra of regular functions on  $  \mathop{\rm Specm}  A $.
 +
Conversely, if  $  X $
 +
is an affine variety and  $  A $
 +
is the algebra of regular functions on  $  X $,
 +
then  $  \mathop{\rm Specm}  A $
 +
can be identified with  $  X $:
 +
To every point  $  x \in X $
 +
corresponds the character  $  \chi _ {x} $
 +
defined by the formula  $  \chi _ {x} ( a) = a ( x) $.
 +
 
 +
The characters of a commutative Banach algebra  $  A $
 +
over $  \mathbf C $
 +
have similar properties. Every character $  \chi : A \rightarrow \mathbf C $
 +
is continuous and has norm $  \| \chi \| \leq  1 $.  
 +
Every maximal ideal in $  A $
 +
is the kernel of a unique character of $  A $.  
 +
The set $  \Phi ( A) $
 +
of all characters, regarded as a subset of the unit ball in $  A  ^ {*} $
 +
endowed with the weak topology, is compact and is called the spectrum of the algebra $  A $,  
 +
and there is a natural homomorphism of $  A $
 +
into the algebra of continuous functions on $  \Phi ( A) $.  
 +
For example, if $  A $
 +
is the algebra of all complex-valued continuous functions on a compact set $  X $,  
 +
equipped with the norm $  \| f \| = \max _ {X}  | f | $,  
 +
then $  \Phi ( A) $
 +
can be identified with $  X $:  
 +
To every element $  x \in X $
 +
corresponds the character $  \chi _ {x} $
 +
defined by the formula $  \chi _ {x} ( f) = f ( x) $,  
 +
$  f \in A $.  
 +
A character $  \chi $
 +
of a symmetric commutative Banach algebra $  A $
 +
is called Hermitian if $  \chi ( a  ^ {*} ) = \chi ( a) $(
 +
$  a \in A $);  
 +
$  \chi $
 +
is Hermitian if and only if $  \mathop{\rm Ker}  \chi $
 +
is a symmetric maximal ideal.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.A. Naimark,  "Normed rings" , Reidel  (1984)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.A. Naimark,  "Normed rings" , Reidel  (1984)  (Translated from Russian)</TD></TR></table>

Latest revision as of 16:43, 4 June 2020


$ A $ over a field $ k $

A non-zero homomorphism of $ A $ into $ k $. A character of the algebra $ A $ is sometimes also called a multiplicative functional on $ A $. Every character $ \chi : A \rightarrow k $ is surjective and has the property $ \chi ( 1) = 1 $. The kernel $ \mathop{\rm Ker} \chi $ is a maximal ideal in $ A $.

If $ A $ is a finitely generated commutative algebra and if the field $ k $ is algebraically closed, then any maximal ideal in $ A $ is the kernel of a unique character, so that the correspondence between characters and maximal ideals is bijective. The collection $ \mathop{\rm Specm} A $ of all characters of a commutative algebra $ A $, its so-called maximal spectrum, has the natural structure of an affine variety. Every element $ a \in A $ determines a function $ \widetilde{a} $ on $ \mathop{\rm Specm} A $, given by the formula $ \widetilde{a} ( \chi ) = \chi ( a) $, and the functions $ \widetilde{a} $ form the algebra of regular functions on $ \mathop{\rm Specm} A $. Conversely, if $ X $ is an affine variety and $ A $ is the algebra of regular functions on $ X $, then $ \mathop{\rm Specm} A $ can be identified with $ X $: To every point $ x \in X $ corresponds the character $ \chi _ {x} $ defined by the formula $ \chi _ {x} ( a) = a ( x) $.

The characters of a commutative Banach algebra $ A $ over $ \mathbf C $ have similar properties. Every character $ \chi : A \rightarrow \mathbf C $ is continuous and has norm $ \| \chi \| \leq 1 $. Every maximal ideal in $ A $ is the kernel of a unique character of $ A $. The set $ \Phi ( A) $ of all characters, regarded as a subset of the unit ball in $ A ^ {*} $ endowed with the weak topology, is compact and is called the spectrum of the algebra $ A $, and there is a natural homomorphism of $ A $ into the algebra of continuous functions on $ \Phi ( A) $. For example, if $ A $ is the algebra of all complex-valued continuous functions on a compact set $ X $, equipped with the norm $ \| f \| = \max _ {X} | f | $, then $ \Phi ( A) $ can be identified with $ X $: To every element $ x \in X $ corresponds the character $ \chi _ {x} $ defined by the formula $ \chi _ {x} ( f) = f ( x) $, $ f \in A $. A character $ \chi $ of a symmetric commutative Banach algebra $ A $ is called Hermitian if $ \chi ( a ^ {*} ) = \chi ( a) $( $ a \in A $); $ \chi $ is Hermitian if and only if $ \mathop{\rm Ker} \chi $ is a symmetric maximal ideal.

References

[1] M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)
How to Cite This Entry:
Character of an associative algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Character_of_an_associative_algebra&oldid=19205
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article