Namespaces
Variants
Actions

Arens multiplication

From Encyclopedia of Mathematics
Revision as of 17:04, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Arens products

A pair of intrinsically defined products on the double dual space of any normed algebra , each making into a Banach algebra. In 1951, [a1] and [a2], R. Arens defined these products using an essentially categorical framework.

Let be a normed algebra with dual Banach space (i.e., set of continuous linear functionals on ) and double dual space . Let be the canonical isometric linear injection given by evaluation: for all , .

The definition of the Arens products is in three steps. For any and , define elements and of by

(a1)

For any and , define elements and of by

(a2)

Finally, for any , define elements and of by

(a3)

The two products and in are often called the first and second Arens product, respectively. However, there is perfect symmetry between them. Each product makes into a Banach algebra, and is an injective homomorphism from into with respect to either Arens product.

The subalgebra is always a spectral subalgebra of with respect to either Arens product (cf. also Spectral decomposition of a linear operator). This means that the spectrum of an element is the same whether calculated in or in . The two products agree whenever one of the factors is in . When the two products coincide on all of , the algebra is said to be Arens regular (cf. also Arens regularity). Subalgebras and quotient algebras of Arens-regular algebras are Arens regular.

If is a continuous (anti-) homomorphism, then is a continuous (anti-) homomorphism with respect to either Arens product (respectively, the opposite Arens products) on and . This shows that the involution on a Banach -algebra extends naturally to an involution on if and only if is Arens regular.

Examples of Arens products.

1) The classical Banach algebra of complex sequences converging to zero with pointwise multiplication has dual and double dual naturally isomorphic to and , respectively. The Arens product on corresponds to the usual pointwise multiplication in .

2–3) The Banach space is a commutative Banach algebra under either pointwise or convolution multiplication. It is Arens regular under the first but not the second. For pointwise multiplication one wishes to represent the double dual of as the Banach space of all complex, bounded, finitely-additive set functions, where is the subset of singular measures (i.e. those which vanish on all finite subsets of ). The duality is implemented by simply integrating the sequence in by the set function in . With pointwise multiplication, is Arens regular and is an isomorphism onto its range. Any product in with one factor from is zero, so is the Gel'fand (i.e., Jacobson) radical (cf. Jacobson radical) of the commutative algebra .

If one regards as the dual of the space of all bounded sequences, then can be viewed as the commutative -algebra of all continuous complex-valued functions on the Stone–Čech compactification of . Hence, can be identified with the Banach space of regular Borel measures on . With this interpretation, it is clear that the two Arens products do not agree. In essence, this construction extends to all discrete semi-group algebras.

4) If is a -algebra, then it is Arens regular and with its Arens product is the usual von Neumann enveloping algebra of (cf. von Neumann algebra). Surprisingly, the Arens regularity of -algebras depends only on their Banach space structure and not at all on the nature of their product. A special case of Arens products on -algebras was recognized very early and plays a significant role in von Neumann algebra theory. Let be a Hilbert space. The trace on the ideal of trace-class operators in the algebra of all bounded linear operators establishes a natural isometric linear isomorphism of the Banach space onto the dual Banach space of the ideal of compact operators . It also defines a natural isometric linear isomorphism of onto . The resulting isometric linear isomorphism is an algebra isomorphism with respect to both Arens products, which agree on . Any satisfies .

Arens-regular algebras are rare. For a locally compact group (cf. also Compact group; Locally compact skew-field) , is Arens regular only when is finite. Even for Arens-regular algebras, is often intractable. Various natural quotients are often more useful. There is an intimate connection between the Arens products on and the double centralizer algebra of . An important technical property of the Arens product is the close connection between approximate identities in and one-sided or actual identity elements in . The case in which is an ideal in has been studied and characterized. The following theorem is an important special case: A semi-simple annihilator Banach algebra is an ideal in its double dual with respect to either Arens product.

The most comprehensive recent exposition is [a3], which contains numerous further references.

References

[a1] R. Arens, "Operations induced in function classes" Monatsh. Math. , 55 (1951) pp. 1–19
[a2] R. Arens, "The adjoint of a bilinear operation" Proc. Amer. Math. Soc. , 2 (1951) pp. 839–848
[a3] T.W. Palmer, "Banach algebras and the general theory of -algebras I" , Encycl. Math. Appl. , 49 , Cambridge Univ. Press (1994)
How to Cite This Entry:
Arens multiplication. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Arens_multiplication&oldid=13482
This article was adapted from an original article by T.W. Palmer (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article