Quasi-normal space
A regular space in which two disjoint -sets have disjoint neighbourhoods. Every
-space in which any two disjoint
-sets have disjoint neighbourhoods is a quasi-normal space. Only for the quasi-normal spaces does the Stone–Čech compactification
coincide with the space
. The following theorem provides a large supply of non-normal quasi-normal spaces: The product of any number of separated metric spaces is quasi-normal.
References
[1] | V.I. Zaitsev, "Projection spectra" Trans. Moscow Math. Soc. , 27 (1972) pp. 135–199 Trudy Moskov. Mat. Obshch. , 27 (1972) pp. 129–193 |
[2] | E.V. Shchepin, "On the bicompact Ponomarev–Zaicev extension and the so-called spectral parasite" Math. USSR Sb. , 17 (1972) pp. 317–326 Mat. Sb. , 88 : 2 (1972) pp. 316–325 |
Comments
Quasi-normal spaces arose in the study of the spectrum of a topological space (cf. also Spectrum of spaces). This spectrum is obtained as follows. A partition of a space is a finite collection
of canonical closed sets (cf. Canonical set) that covers
and the elements of which have disjoint interiors. The set of all these partitions is partially ordered by:
if and only if
refines
. The nerve
of
(cf. Nerve of a family of sets) is the complex of subfamilies of
that have a non-empty intersection. There is an obvious simplicial mapping
if
. If the set of partitions of
is (upward) directed by
, then the inverse spectrum
is the spectrum of
and is denoted by
. To obtain a suitable limit of this spectrum one takes the set
of maximal threads of
. A thread is a choice
of simplexes with
for all
and such that
whenever
. A thread
is maximal if whenever
is another thread such that
is a face of
for every
, one has
. The basic open sets are the sets of the form
.
The space , first introduced in [a3], is the space of all maximal centred systems of canonical closed sets topologized in the usual way, i.e. by taking the collection
as a base for the closed sets of
, where
is the set of maximal centred systems to which
belongs.
It turns out that there is a natural homeomorphism from onto
. Thus, for quasi-normal spaces
one has
.
A -set is a finite intersection of closures of open sets. A
-space, first introduced in [1], is a semi-regular (
-) space all open sets of which are unions of
-sets. I.e., a
-space is a semi-regular (
-) space (the canonical open sets form a base for the topology) in which the canonical closed sets form a net (of sets in a topological space), i.e. if
is open and
, then there is a canonical closed set
such that
.
References
[a1] | A. Kurosh, "Kombinatorischer Aufbau der bikompakten topologischen Räume" Compositio Math. , 2 (1935) pp. 471–476 |
[a2] | V.I. Zaitsev, "Finite spectra of topological spaces and their limit spaces" Math. Ann. , 179 (1968–1969) pp. 153–174 |
[a3] | V.I. Ponomarev, "Paracompacta: their projection spectra and continuous mappings" Mat. Sb. , 60 (102) (1963) pp. 89–119 (In Russian) |
Quasi-normal space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-normal_space&oldid=18850