Coherent analytic sheaf
A coherent sheaf of modules on an analytic space
. A space
is said to be coherent if
is a coherent sheaf of rings. Any analytic space over an algebraically closed field is coherent. The most important examples of a coherent analytic sheaf on such a space
are a locally free sheaf (that is, an analytic sheaf locally isomorphic to the sheaf
) and also the sheaf of ideals of an analytic set
, that is, the sheaf of germs of analytic functions equal to
on
, [1].
If is a coherent analytic sheaf on a complex-analytic space
, then the space of its sections,
, is endowed with a natural topology turning it into a Fréchet space when
is separable. For
, this topology is the same as the topology of uniform convergence of analytic functions on compacta. In this case,
becomes a Fréchet sheaf, that is, for arbitrary open sets
the restriction mapping
is continuous. An analytic homomorphism of coherent sheaves
induces a continuous linear mapping
. If
is a coherent analytic sheaf on
and
is a submodule of
,
, then the submodule
is closed in
for any neighbourhood
of
. The cohomology spaces
also have a natural topology, which is not, in general, separable for
(they are quotient spaces of Fréchet spaces) [2], [4].
Coherent analytic sheaves were introduced in connection with problems in the theory of analytic functions on domains in (see [3], [5]). Later they and their cohomology became a fundamental tool in the global theory of analytic spaces. Criteria for the vanishing of cohomology with values in a coherent analytic sheaf (cf. Kodaira theorem; Ample vector bundle; Stein space) as well as criteria for its finiteness and separability (see Finiteness theorems in the theory of analytic spaces) play an important role in this theory.
See also Vector bundle, analytic; Duality in the theory of analytic spaces.
References
[1] | S.S. Abhyankar, "Local analytic geometry" , Acad. Press (1964) |
[2] | C. Banica, O. Stanasila, "Algebraic methods in the global theory of complex spaces" , Wiley (1976) (Translated from Rumanian) |
[3] | H. Cartan, "Idéaux et modules de fonctions analytiques de variables complexes" Bull. Soc. Math. France , 78 (1950) pp. 28–64 |
[4] | R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) |
[5] | K. Oka, "Sur les fonctions analytiques de plusieurs variables (VII. Sur quelques notions arithmétiques)" Bull. Soc. Math. France , 78 (1950) pp. 1–27 |
Comments
See also Coherent sheaf.
References
[a1] | H. Grauert, R. Remmert, "Coherent analytic sheaves" , Springer (1984) (Translated from German) |
Coherent analytic sheaf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Coherent_analytic_sheaf&oldid=18834