Transversal system
transversal design, transversal scheme, -system
A system of sets defined for a given collection of
pairwise-disjoint finite sets
, each of which has cardinality
. Namely: a transversal system
is a system of
sets
(blocks or transversals), containing
elements each and such that:
1) ;
;
;
2) for
.
In a transversal design, any two elements and
,
, occur together in exactly one block. The existence of a transversal design
is equivalent to the existence of an orthogonal array
.
Transversal designs are used in recursive constructions of block designs (cf. Block design).
A set of transversals in
is called parallel if no two of them intersect. If a transversal design
contains
(or more) parallel classes, then it is denoted by
.
Some of the basic properties of transversal systems are:
a) if and
exist, then so does
;
b) exists if and only if
exists.
References
[1] | M. Hall, "Combinatorial theory" , Wiley (1986) |
[2] | H. Hanani, "The existence and construction of balanced incomplete block designs" Ann. Math. Stat. , 32 (1961) pp. 361–386 |
Comments
The finite sets making up the design are called point classes or point groups.
The existence of a transversal design is equivalent to the existence of
mutually orthogonal Latin squares of order
. If a
exists, and
, then
.
See also [a1]–[a3] for the recursive construction of and existence results for transversal designs (and of their generalization "transversal design with holes" , [a2]).
One of the most important results on recursive construction of transversal designs (due to R.M. Wilson [a4], see also [a1]) is as follows:
Let be a
with point classes
and
, let
be a
-subset of
and put
for
, and
for every block
of
. Assume the existence of
for
and of
for each block
of
. Then
also exists.
Transversals designs (and their dual structures, nets) are also of considerable geometric and algebraic interest. For instance, a is equivalent to an affine or projective plane of order
, and a
is basically the same as a quasi-group of order
. Thus, the geometric and algebraic properties of transversal designs (including the study of their automorphism groups) have found considerable interest, cf. [a4].
References
[a1] | T. Beth, D. Jungnickel, H. Lenz, "Design theory" , Cambridge Univ. Press (1986) |
[a2] | A.E. Brouwer, "Recursive constructions of mutually orthogonal Latin squares" Ann. Discr. Math. , 46 (1991) pp. 149–168 |
[a3] | D. Jungnickel, "Latin squares, their geometries and their groups: a survey" D. Ray-Chaudhuri (ed.) , Coding Theory and Design Theory , IMA Vol. Math. Appl. , 21 , Springer (1990) pp. 166–225 |
[a4] | R.M. Wilson, "Concerning the number of mutually orthogonal Latin squares" Discr. Math. , 9 (1974) pp. 181–198 |
[a5] | H. Hanani, "Balanced incomplete block designs and related designs" Discrete Math. , 11 (1975) pp. 255–369 |
Transversal system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transversal_system&oldid=18087