Markov moment
Markov time
A notion used in probability theory for random variables having the property of independence of the "future" . More precisely, let be a measurable space with a non-decreasing family
,
, of
-algebras of
(
in the case of continuous time and
in the case of discrete time). A random variable
with values in
is called a Markov moment or Markov time (relative to the family
,
) if for each
the event
belongs to
. In the case of discrete time this is equivalent to saying that for any
the event
belongs to
.
Examples.
1) Let ,
, be a real-valued right-continuous random process given on
, and let
. Then the random variables
![]() |
and
![]() |
that is, the (first and first after ) times of hitting the (Borel) set
, form Markov moments (in the case
it is assumed that
).
2) If ,
, is a standard Wiener process, then the Markov moment
![]() |
has probability density
![]() |
Here , but
.
3) The random variable
![]() |
being the first time after which remains in
, is an example of a non-Markov moment (a random variable depending on the "future" ).
Using the idea of a Markov moment one can formulate the strong Markov property of Markov processes (cf. Markov process). Markov moments and stopping times (that is, finite Markov moments) play a major role in the general theory of random processes and statistical sequential analysis.
References
[1] | I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , 2 , Springer (1975) (Translated from Russian) |
Comments
References
[a1] | R.M. Blumenthal, R.K. Getoor, "Markov processes and potential theory" , Acad. Press (1968) |
[a2] | J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390 |
[a3] | E.B. Dynkin, "Markov processes" , 1 , Springer (1965) (Translated from Russian) |
[a4] | A.D. [A.D. Ventsel'] Wentzell, "A course in the theory of stochastic processes" , McGraw-Hill (1981) (Translated from Russian) |
[a5] | L.P. Breiman, "Probability" , Addison-Wesley (1968) |
Markov moment. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Markov_moment&oldid=17905