Absolute retract for normal spaces
A topological space such that every mapping
of any closed subset
of an arbitrary normal space
can be extended to the entire space
. A direct product of absolute retracts for normal spaces is an absolute retract for normal spaces, as is any retract (cf. Retract of a topological space) of an absolute retract for normal spaces. In particular, the following spaces are absolute retracts for normal spaces: the unit interval
; the
-dimensional cube
; and the Hilbert cube
. Any two mappings of a binormal space into an absolute retract for normal spaces are homotopic; while a binormal absolute retract for normal spaces is contractible into a point.
Comments
Usually an absolute retract (AR) for normal spaces is defined to be a normal space which is a retract of every normal space in which it is imbedded as a closed subset. A space satisfying the property in the article above is then called an absolute extensor (AE) for normal spaces. One then proves that a space is an (AR) if and only if it is an (AE). Absolute retracts and extensors can be defined for any class of spaces (i.e. not just for normal spaces).
A binormal space is a space for which the product
is normal. It can be proved that a space
is binormal if and only if
is normal and countably paracompact (cf. Paracompactness criteria).
References
[a1] | S.T. Hu, "Theory of retracts" , Wayne State Univ. Press , Detroit (1965) |
Absolute retract for normal spaces. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Absolute_retract_for_normal_spaces&oldid=17595