Fibre product
of a system of topological spaces with respect to a system of continuous mappings
,
The subset of the Tikhonov product
, which is considered in the induced topology and which consists of the points
for which
, for all indices
and
from
. The mapping which brings the point
into correspondence with the point
(or with the point
) is called a projection of the fibre product
onto
,
(or onto
). If the space
is a one-point space, then
. If the
,
, are completely-regular spaces, the fibre product
is completely regular. The fibre product, in particular its special case the partial product, is well suited for the construction of universal (in the sense of homeomorphic inclusion) topological spaces of given weight and given dimension (cf. Universal space).
Comments
In category theory the term "pullbackpullback" is also used, cf. Fibre product of objects in a category.
Fibre product. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fibre_product&oldid=17578