Transitive group
A permutation group such that each element
can be taken to any element
by a suitable element
, that is,
. In other words,
is the unique orbit of the group
. If the number of orbits is greater than 1, then
is said to be intransitive. The orbits of an intransitive group are sometimes called its domains of transitivity. For an intransitive group
with orbits
,
![]() |
and the restriction of the group action to is transitive.
Let be a subgroup of a group
and let
![]() |
be the decomposition of into right cosets with respect to
. Further, let
. Then the action of
is defined by
. This action is transitive and, conversely, every transitive action is of the above type for a suitable subgroup
of
.
An action is said to be
-transitive,
, if for any two ordered sets of
distinct elements
and
,
, there exists an element
such that
for all
. In other words,
possesses just one anti-reflexive
-orbit. For
, a
-transitive group is called multiply transitive. An example of a doubly-transitive group is the group of affine transformations
,
, of some field
. Examples of triply-transitive groups are the groups of fractional-linear transformations of the projective line over a field
, that is, transformations of the form
![]() |
where
![]() |
A -transitive group
is said to be strictly
-transitive if only the identity permutation can leave
distinct elements of
fixed. The group of affine transformations and the group of fractional-linear transformations are examples of strictly doubly- and strictly triply-transitive groups.
The finite symmetric group (acting on
) is
-transitive. The finite alternating group
is
-transitive. These two series of multiply-transitive groups are the obvious ones. Two
-transitive groups, namely
and
, are known, as well as two
-transitive groups, namely
and
(see [3] and also Mathieu group). There is the conjecture that apart from these four groups there are no non-trivial
-transitive groups for
. This conjecture has been proved, using the classification of finite simple non-Abelian groups [6]. Furthermore, using the classification of the finite simple groups, the classification of multiply-transitive groups can be considered complete.
-Transitive groups have also been defined for fractional
of the form
,
. Namely, a permutation group
is said to be
-transitive if either
, or if all orbits of
have the same length greater than 1. For
, a group
is
-transitive if the stabilizer
is
-transitive on
(see [3]).
References
[1] | C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) |
[2] | P. Hall, "The theory of groups" , Macmillan (1959) |
[3] | H. Wielandt, "Finite permutation groups" , Acad. Press (1968) (Translated from German) |
[4] | D. Passman, "Permutation groups" , Benjamin (1968) |
[5] | D.G. Higman, "Lecture on permutation representations" , Math. Inst. Univ. Giessen (1977) |
[6] | P.J. Cameron, "Finite permutation groups and finite simple groups" Bull. London Math. Soc. , 13 (1981) pp. 1–22 |
Comments
The degree of a permutation group is the number of elements of
. An (abstract) group
is said to be a
-transitive group if it can be realized as a
-fold transitive permutation group
.
Due to the classification of finite simple groups, all -transitive permutation groups have been found. See the list and references in [a1].
An important concept for transitive permutation groups is the permutation rank. It can be defined as the number of orbits of on
.
Primitive permutation groups with permutation rank have been almost fully classified by use of the classification of finite simple groups [a2].
References
[a1] | A. Cohen, H. Zantema, "A computation concerning doubly transitive permutation groups" J. Reine Angew. Math. , 347 (1984) pp. 196–211 |
[a2] | A.E. Brouwer, A.M. Cohen, A. Neumaier, "Distance regular graphs" , Springer (1989) pp. 229 |
Transitive group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transitive_group&oldid=17556