Stein space
holomorphically-complete space
A paracompact complex analytic space with the following properties:
1) any compact analytic subset in is finite (cf. Analytic set 6));
2) any compact set has an open neighbourhood
in
such that
![]() |
is compact (weak holomorphic convexity).
A complex manifold is a Stein space if and only if
is a Stein manifold. A complex space is a Stein space if and only if its reduction has this property. Any holomorphically-convex open subspace in a Stein space is a Stein space. A reduced complex space is a Stein space if and only if its normalization is a Stein space. Any closed analytic subspace in a Stein space, for instance in
, is a Stein space. Any finite-dimensional Stein space has a proper injective holomorphic mapping (cf. Proper morphism) into some
which is regular at every non-singular point. Any unramified covering of a Stein space is a Stein space. The direct product of two Stein spaces is a Stein space. In many cases a holomorphic fibre space whose base and fibres are Stein spaces is a Stein space (e.g. if the structure group is a complex Lie group with a finite number of connected components). However, there are holomorphic fibre spaces with fibre
and base
that are not Stein manifolds [2].
Let be a coherent analytic sheaf on a Stein space
. Then the following theorems
and
of H. Cartan (cf. Cartan theorem) hold:
A) The space generates the stalk
of the sheaf
at any point
;
B) for all
.
Conversely, if for any coherent sheaf of ideals
, then
is a Stein space. A domain
is a Stein manifold if and only if
.
From the Cartan theorems it follows that on a Stein space the first Cousin problem is always solvable, and if , then the second Cousin problem is solvable as well (see Cousin problems). On any Stein manifold
the Poincaré problem, i.e. can any meromorphic function be represented in the form
, where
,
, is solvable. Furthermore, if
, then
and
can be chosen in such a way that the germs
at any point
are relatively prime. The group of divisor classes of an irreducible reduced Stein space
is isomorphic to
. For any
-dimensional Stein space
, the homology groups
for
, and the group
is torsion-free. If
is a manifold, then
is homotopy equivalent to an
-dimensional cell complex. On the other hand, for any countable Abelian group
and any
there is a domain of holomorphy
such that
.
An important trend in the theory of Stein spaces is connected with studies of the plurisubharmonic functions on them (see Levi problem; Pseudo-convex and pseudo-concave). The basic result here is that a Stein space is characterized as a space on which there exists a strongly -pseudoconvex function exhausting it.
Algebras of holomorphic functions on a Stein space
(so-called Stein algebras) have the following properties. For a maximal ideal
the following conditions are equivalent:
is closed in
with respect to the topology of compact convergence;
for some point
; and
is finitely generated. If
is finite-dimensional, then each character
is of the form
for some
. If
,
are two finite-dimensional Stein spaces with isomorphic algebras
, then
; moreover, any isomorphism
is continuous and is induced by some isomorphism
of complex spaces.
A significant role in the theory of Stein spaces is played by the so-called Oka principle, which states that a problem in the class of analytic functions on a Stein space is solvable if and only if it is solvable in the class of continuous functions. The second Cousin problem satisfies this principle. The following statement is still more general: The classification of the principal analytic fibrations (cf. Principal analytic fibration) with as basis a given reduced Stein space and as structure group a given complex Lie group
, coincides with the classification of the topological fibrations with the same basis and the same structure group. The groups of connected components in the groups of analytic and continuous functions
also coincide.
References
[1] | H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1977) (Translated from German) |
[2] | J.-P. Demailly, "Un example de fibré holomorphe non de Stein à fibre ![]() |
[3a] | A.L. Onishchik, "Stein spaces" J. Soviet Math. , 4 : 5 (1974) pp. 540–554 Itogi Nauk. i Tekhn. Algebra.Topol. Geom. , 11 (1974) pp. 125–151 |
[3b] | A.L. Onishchik, "Pseudoconvexity in the theory of complex spaces" J. Soviet Math. , 14 : 4 (1977) pp. 1363–1407 Itogi Nauk. i Tekhn. Algebra. Topol. Geom. , 15 (1977) pp. 93–171 |
Comments
Let be a complex space. Let
be the so-called nil radical of
, i.e. the union of the nil radicals of the stalks
. It is a coherent sheaf (of ideals). The space
is called the reduction of
, as is the associated mapping
. A complex space
is called reduced at a point
if
. The space
is called reduced if it is reduced at all its points (i.e. if
).
The set of elements not dividing zero is multiplicative (i.e.
is open in
;
; and
implies
). Hence
(with
,
) is a well-defined
-module.
is called the sheaf of germs of meromorphic functions on
. The complex space
is called normal at
if
is reduced at
and
is integrally closed in
. A complex space is called normal if it is normal at every point. The normalization theorem says that for each reduced complex space
there are a normal complex space
and a finite surjective holomorphic mapping
. The pair
is called the normalization of
. It is uniquely defined up to analytic isomorphisms.
Finally, is called irreducible at
if
is an integral domain, and irreducible if it is irreducible at all points. See [1].
References
[a1] | L. Hörmander, "An introduction to complex analysis in several variables" , North-Holland (1973) |
[a2] | L. Kaup, B. Kaup, "Holomorphic functions of several variables" , de Gruyter (1983) (Translated from German) |
[a3] | R.C. Gunning, H. Rossi, "Analytic functions of several complex variables" , Prentice-Hall (1965) pp. Chapt. 1, Sect. C |
Stein space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stein_space&oldid=17413