Universal property
A property of an object in a category which characterizes it as a representing object for some (covariant or contravariant) set-valued functor defined on the category. More formally, let be a category and
a functor (for definiteness, the covariant case is treated here). Then a universal element of
is a pair
, where
is an object of
and
, such that for every other such pair
there is a unique
in
satisfying
. The correspondence between
and
defines a natural isomorphism between
and the functor
; the object
is said to be a representing object (or representation) for the functor
, and its universal property is the possession of the universal element
.
Examples.
1) In any category , the universal property of a (categorical) product
is the possession of a pair of projections
; that is,
is a universal element for the (contravariant) functor which sends an object
to the set of all pairs of morphisms
.
2) In the category of modules over a commutative ring , the universal property of a tensor product
is the possession of a bilinear mapping
; that is,
is a representing object for the covariant functor which sends a module
to the set of bilinear mappings
.
An object possessing a given universal property is unique up to canonical isomorphism in the appropriate category. The idea of characterizing objects by means of universal properties was first exploited by S. MacLane [a1].
References
[a1] | S. MacLane, "Duality for groups" Bull. Amer. Math. Soc. , 56 (1950) pp. 485–516 |
Universal property. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universal_property&oldid=17411