Quadratic differential
on a Riemann surface
A rule which associates to each local parameter (cf. Local uniformizing parameter) mapping a parametric neighbourhood
into the extended complex plane
(
), a function
such that for any local parameters
and
with
non-empty, the following holds in this intersection:
![]() | (1) |
here is the image of
in
under
. A quadratic differential is often denoted by the symbol
, to which is attributed the invariance with respect to the choice of the local parameter
, as indicated by (1). In other words, a quadratic differential is a non-linear differential of type
on a Riemann surface.
The functions entering into the definition of a quadratic differential are ordinarily assumed to be measurable or even analytic. In the latter case the quadratic differential is called analytic. A point
is called a zero (or pole) of
of order
if for each local parameter
the function
has a zero (or pole) of order
at
. The zeros and poles of a quadratic differential are called critical points of it. The zeros and simple poles are called finite critical points and their totality is denoted by
. The set of all poles of order
is denoted by
. If a curve
has a tangent at each of its points
with respect to the parameter
, with tangent vector
, and
![]() | (2) |
then is said to be positive, and one writes
, on the curve
. If (2) holds with the
sign replaced by
, then
is called negative
on
. Each maximal regular curve on
for which
(or
) is called a trajectory (or orthogonal trajectory) of the quadratic differential
.
A quadratic differential defined on a finite Riemann surface
belongs to
if the boundary
of
is either empty or consists of a finite number of points
and arcs
on each of which
is regular and positive or negative. If, furthermore,
is empty or if
is regular and positive on
, then
is called a positive quadratic differential on the Riemann surface
. The metric
, called a
-metric, is single-valued on
and invariant with respect to the choice of the local parameter
.
In some neighbourhood of any point
, the function
![]() |
is regular, single-valued and univalent for each choice of the sign of the integrand; furthermore, each maximal arc of a trajectory (or orthogonal trajectory) of is converted under
into a horizontal (or vertical) line interval. Therefore, through each point
passes a trajectory which is either an open arc or a Jordan curve on
. The topological and conformal structures of the family of trajectories in a small neighbourhood of each critical point
are completely classified in their dependence on the order of the critical point
and (if
is a pole of the second order and
) on
![]() |
(see Local structure of trajectories). A description of the global structure of trajectories is known for finite Riemann surfaces and has many important applications (see also [1]).
O. Teichmüller has investigated the role of quadratic differentials in the theory of extremal conformal and quasi-conformal mapping and in the solution of moduli problems of Riemann surfaces (see [1]–[3]). He formulated a principle according to which certain quadratic differentials can be associated with extremal problems in the geometric theory of functions, where to each type of extremal problem correspond specific singularities of the quadratic differential (poles), and the geometric properties of the solution are related in a suitable fashion to the structure of the trajectories of the quadratic differential. Inequalities for the coefficients of univalent functions (cf. Univalent function) have been proved in terms of quadratic differentials. A more general inequality for the coefficients of univalent functions in families of domains distributed on a finite Riemann surface is called the general coefficient theorem and is a concrete realization of the Teichmüller principle for a wide class of problems (see [1], [4]). The Teichmüller principle also enables one to establish a special coefficient theorem and to solve a large number of concrete extremal problems (see [1], [5]).
References
[1] | J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958) |
[2] | M. Schiffer, D.C. Spencer, "Functionals of finite Riemann surfaces" , Princeton Univ. Press (1954) |
[3] | L.V. Ahlfors, L. Bers, , Spaces of Riemann surfaces and conformal mapping , Moscow (1961) (In Russian) |
[4] | P.M. Tamrazov, "On the general coefficient theorem" Math. USSR Sb. , 1 : 1 (1967) pp. 49–59 Mat. Sb. , 72 : 1 (1967) pp. 59–71 |
[5] | J.A. Jenkins, "Some area theorems and a special coefficient theorem" Illinois J. Math. , 8 : 1 (1964) pp. 80–99 |
Comments
References
[a1] | K. Strebel, "Quadratic differentials" , Springer (1984) (Translated from German) |
Quadratic differential. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quadratic_differential&oldid=16926