The representation of a ring as the direct sum of subrings related to a given idempotent
. For a ring
containing an idempotent
, there exist left, right and two-sided Peirce decompositions, which are defined by
respectively. If
has no identity, then one puts, by definition,
The sets
and
are defined analogously. Therefore, in a two-sided Peirce decomposition an element
can be represented as
in a left decomposition as
and in a right decomposition as
There is also a Peirce decomposition with respect to an orthogonal system of idempotents
where
:
This decomposition was proposed by B. Peirce [1].
References
[1] | B. Peirce, "Linear associative algebra" Amer. J. Math. , 4 (1881) pp. 97–229 |
In modern ring theory the Peirce decomposition appears in the ring of a Morita context
, where
and
are Morita related if they are subrings of a ring
with an idempotent
such that
,
, i.e., they are parts of a Peirce decomposition of
(see [a3], p.12).
A context or a set of pre-equivalence data is a sextuple
where
and
are rings,
is a left
-, right
-bimodule,
is a right
-, left
-bimodule and
,
are bimodule homomorphisms, such that the following two associativity diagrams commute:
and
Using
, the set of all
-matrices
acquires a multiplication (using the usual matrix formulas) and this multiplication is associative precisely if the two diagrams above commute. Such a ring is then called the ring of a Morita context.
If
is a Morita context with
and
epic, then the functors
,
define an equivalence of categories between the categories of left
-modules and right
-modules; cf. also Morita equivalence. Cf. [a1], §4.1 for more details.
References
[a1] | L.H. Rowen, "Ring theory" , I , Acad. Press (1988) pp. 36 |
[a2] | N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956) pp. 48, 50 |
[a3] | J.C. McConnell, J.C. Robson, "Noncommutative Noetherian rings" , Wiley (1987) |
How to Cite This Entry:
Peirce decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Peirce_decomposition&oldid=15535
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article