Natural equation
of a curve
A system of equations
![]() |
defining the curvature and torsion
of the curve as functions of the arc length parameter
on the curve. For any regular functions
and
there exists a curve, unique up to translation in space, with curvature
and torsion
. A necessary and sufficient condition for a curve to be in a plane is that its torsion vanishes identically. A necessary and sufficient condition for a curve to be a straight line (or a segment of a straight line) is that its curvature vanishes identically.
Comments
In the article above, must be positive in order to generate uniqueness of the curve; for existence
suffices (cf. [a1], Sects. 8.5.8 and 8.6.15).
Instead of "natural equation" one also finds the phrase "intrinsic equation of a curveintrinsic equation of a curve" . The representation of (certain special) plane curves by means of a relation goes back to L. Euler.
References
[a1] | M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French) |
[a2] | M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976) |
[a3] | B. O'Neill, "Elementary differential geometry" , Acad. Press (1966) |
[a4] | M. Spivak, "A comprehensive introduction to differential geometry" , 2 , Publish or Perish pp. 1–5 |
[a5] | W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973) |
[a6] | D.J. Struik, "Differential geometry" , Addison-Wesley (1950) pp. Sect. 1–8 |
Natural equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Natural_equation&oldid=15274