Hurwitz theorem
From Encyclopedia of Mathematics
Let be a sequence of holomorphic functions in a domain
that converges uniformly on compact sets in
to a function
. Then, for any closed rectifiable Jordan curve
lying in
together with the domain bounded by
and not passing through zeros of
, it is possible to find a number
such that for
each of the functions
has inside
the same number of zeros as
inside
. Obtained by A. Hurwitz .
References
[1a] | A. Hurwitz, "Ueber die Bedingungen, unter welchen eine Gleichung nur Würzeln mit negativen reellen Teilen besitzt" Math. Ann. , 46 (1895) pp. 273–284 |
[1b] | A. Hurwitz, "Ueber die Bedingungen, unter welchen eine Gleichung nur Würzeln mit negativen reellen Teilen besitzt" , Math. Werke , 2 , Birkhäuser (1933) pp. 533–545 |
[2] | A.I. Markushevich, "Theory of functions of a complex variable" , 1 , Chelsea (1977) (Translated from Russian) |
Comments
For another theorem using "nearness of functions" to derive "equality of number of zeros" see Rouché theorem.
How to Cite This Entry:
Hurwitz theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hurwitz_theorem&oldid=14800
Hurwitz theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hurwitz_theorem&oldid=14800
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article