Real-analytic space
An analytic space over the field of real numbers. Unlike in the case of complex-analytic spaces, the structure sheaves of real-analytic spaces need not be coherent (cf. Coherent sheaf). Real-analytic spaces are said to be coherent if their structure sheaves are coherent. All real-analytic manifolds (i.e. smooth real-analytic spaces) are coherent real-analytic spaces.
Let be the germ at a point
of a real-analytic subset of
(cf. Analytic set). This defines the germ at
of a complex-analytic subset
of the space
with the following equivalent properties: 1)
is the intersection of all germs of complex-analytic sets containing
; 2) if
is the analytic algebra of the germ
, then
is the analytic algebra of the germ
. The germ
is said to be the complexification of the germ
, and
is said to be the real part of the germ
. Analogously, for any coherent real-analytic countably-infinite space
it is possible to construct the complexification
, which is a complex-analytic space.
will then have a fundamental system of neighbourhoods in
which are Stein spaces (cf. Stein space).
The theory of coherent real-analytic spaces is similar to the theory of complex Stein spaces. Global sections of any coherent analytic sheaf of modules on a coherent real-analytic countably-infinite space
generate modules of germs of its sections at any point of
, and all groups
vanish if
.
For any finite-dimensional coherent real-analytic countably-infinite space there exists a morphism
![]() |
such that is a proper one-to-one mapping of
into a coherent subspace in
, while
is an imbedding at the smooth points of
. In particular, any (Hausdorff and countably-infinite) real-analytic manifold is isomorphic to a real-analytic submanifold in
. For a reduced coherent real-analytic space
the set of classes of isomorphic real-analytic principal fibre bundles with a real structure Lie group
, admitting complexification, and base
is in one-to-one correspondence with the set of classes of isomorphic topological principal fibre bundles with the same structure group
.
References
[1] | A. Tognoli, "Some results in the theory of real analytic spaces" M. Jurchesan (ed.) , Espaces Analytiques (Bucharest 1969) , Acad. Roumanie (1971) pp. 149–157 |
Comments
References
[a1] | H. Cartan, "Variétés analytiques réelles et variétés analytiques complexes" Bull. Soc. Math. France , 85 (1957) pp. 77–99 |
[a2] | F. Bruhat, H. Cartan, "Sur la structure des sous-ensembles analytiques réels" C.R. Acad. Sci. Paris , 244 (1957) pp. 988–900 |
[a3] | F. Bruhat, H. Cartan, "Sur les composantes irréductibles d'un sous-ensemble" C.R. Acad. Sci. Paris , 244 (1957) pp. 1123–1126 |
[a4] | F. Bruhat, H. Whitney, "Quelques propriétés fondamentales des ensembles analytiques-réels" Comm. Math. Helv. , 33 (1959) pp. 132–160 |
[a5] | R. Narasimhan, "Introduction to the theory of analytic spaces" , Lect. notes in math. , 25 , Springer (1966) |
[a6] | H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German) |
Real-analytic space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Real-analytic_space&oldid=14527