Namespaces
Variants
Actions

Inertial prime number

From Encyclopedia of Mathematics
Revision as of 17:02, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

inert prime number, in an extension

A prime number such that the principal ideal generated by remains prime in , where is a finite extension of the field of rational numbers ; in other words, the ideal is prime in , where is the ring of integers of . In this case one also says that is inert in the extension . By analogy, a prime ideal of a Dedekind ring is said to be inert in the extension , where is the field of fractions of and is a finite extension of , if the ideal , where is the integral closure of in , is prime.

If is a Galois extension with Galois group , then for any ideal of the ring , a subgroup of the decomposition group of the ideal is defined which is called the inertia group (see Ramified prime ideal). The extension is a maximal intermediate extension in in which the ideal is inert.

In cyclic extensions of algebraic number fields there always exist infinitely many inert prime ideals.

References

[1] S. Lang, "Algebraic number theory" , Addison-Wesley (1970)
[2] H. Weyl, "Algebraic theory of numbers" , Princeton Univ. Press (1959)
[3] J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986)


Comments

Let be a Galois extension with Galois group . Let be a prime ideal of (the ring of integers ) of . The decomposition group of is defined by . The subgroup is the inertia group of over . It is a normal subgroup of . The subfields of which, according to Galois theory, correspond to and , are called respectively the decomposition field and inertia field of .

How to Cite This Entry:
Inertial prime number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inertial_prime_number&oldid=13151
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article