Unbiased test
A statistical test of size (level) ,
, for testing a compound hypothesis
:
against a compound alternative
:
, whose power function
(cf. Power function of a test) satisfies
![]() |
![]() |
In many problems in statistical hypotheses testing there are no uniformly most-powerful tests (cf. Uniformly most-powerful test). But if one restricts the class of tests, then there may be uniformly most-powerful tests in that class. If in the problem of testing the hypothesis against the alternative
there is a uniformly most-powerful test, then it is unbiased (cf. Unbiased test), since the power of such a test cannot be less than that of the so-called trivial test whose critical function
is constant and equal to the size
, that is,
, where
is the random variable whose realization is used to test the hypothesis
against the alternative
.
Example. The sign test is uniformly most-powerful unbiased in the problem of testing the hypothesis according to which the unknown true value of the parameter
of the binomial distribution is equal to
against the alternative
:
.
References
[1] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1959) |
Unbiased test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unbiased_test&oldid=12993