Salem number
An algebraic integer (cf. Algebraic number) such that all other Galois conjugates of
lie inside the closed unit disc
, with at least one lying on the boundary (cf. also Galois theory). One should compare this definition with that of a Pisot number. The set of Salem numbers is traditionally denoted by
. If
is a Salem number, then it is reciprocal in the sense that its minimal polynomial
satisfies
, where
is the degree of
, so
is even and
. Two of the conjugates of
are real, namely
and
, and the rest lie on the unit circle. The field
is thus a quadratic extension (cf. Extension of a field) of the totally real field
, so not all number fields contain Salem numbers, in contrast to the situation for Pisot numbers [a1].
If is a Pisot or Salem number, then, given
, there is a positive number
such that every interval of real numbers contains a
such that
for all
. Here
denotes the distance from
to the nearest integer. This property characterizes the Pisot and Salem numbers among the real numbers [a3]. This property leads to applications in harmonic analysis, dynamical systems theory (cf. also Dynamical system) and the theory of quasi-crystals, cf. also Pisot number.
Each Pisot number is the limit from both sides of a sequence of Salem numbers. The proof of this gives an explicit construction of infinitely many Salem numbers from each Pisot number. In fact, every Salem number arises infinitely many times in this construction [a2].
It is an open question whether the Salem numbers are dense in , but it has been conjectured that if
is the set of Pisot numbers, then
is closed. This would imply that
is nowhere dense. All the Salem numbers smaller than
and of degree at most
are known, see [a4]. The smallest known Salem number is the number
of degree
known as Lehmer's number. The minimum polynomial of
is Lehmer's polynomial:
. This is also the smallest known value
of the Mahler measure.
References
[a1] | M.J. Bertin, A. Decomps–Guilloux, M. Grandet–Hugot, M. Pathiaux–Delefosse, J.P. Schreiber, "Pisot and Salem Numbers" , Birkhäuser (1992) |
[a2] | D.W. Boyd, "Small Salem numbers" Duke Math. J. , 44 (1977) pp. 315–328 |
[a3] | Y. Meyer, "Algebraic numbers and harmonic analysis" , North-Holland (1972) |
[a4] | M.J. Mossinghoff, "Small Salem numbers" , web page: http://www.math.ucla.edu/~mjm/lc/lists/SalemList.html (1998) |
Salem number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Salem_number&oldid=12578