Positive-definite form
An expression
![]() |
where , which takes non-negative values for any real values
and vanishes only for
. Therefore, a positive-definite form is a quadratic form of special type. Any positive-definite form can be converted by a linear transformation to the representation
![]() |
In order that a form
![]() |
be positive definite, it is necessary and sufficient that , where
![]() |
In any affine coordinate system, the distance of a point from the origin is expressed by a positive-definite form in the coordinates of the point.
A form
![]() |
such that and
for all values of
and
only for
is called a Hermitian positive-definite form.
The following concepts are related to the concept of a positive-definite form: 1) a positive-definite matrix is a matrix such that
is a Hermitian positive-definite form; 2) a positive-definite kernel is a function
such that
![]() |
for every function with an integrable square; 3) a positive-definite function is a function
such that the kernel
is positive definite. By Bochner's theorem, the class of continuous positive-definite functions
with
coincides with the class of characteristic functions of distributions of random variables (cf. Characteristic function).
Comments
A kernel that is semi-positive definite (non-negative definite) is one that satisfies for all
. Such a kernel is sometimes also simply called positive. However, the phrase "positive kernel" is also used for the weaker notion
(almost-everywhere). A positive kernel
in the latter sense has at least one eigen value
while a semi-positive definite kernel has all eigen values
.
References
[a1] | E. Lukacs, "Characteristic functions" , Griffin (1970) |
[a2] | P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) pp. Chapt. III, §3 (Translated from Russian) |
[a3] | H. Hochstadt, "Integral equations" , Wiley (1973) pp. 255ff |
[a4] | F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , I-II , Chelsea, reprint (1959) pp. Chapt. X (Translated from Russian) |
Positive-definite form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Positive-definite_form&oldid=12091