Néron model
of an Abelian variety
A group scheme associated to an Abelian variety and having a certain minimality property. If is a local Henselian discrete valuation ring with residue field
and field of fractions
and if
is an Abelian variety of dimension
over
, then a Néron model of
is defined as a smooth commutative group scheme
over
whose generic fibre
is isomorphic to
, while the canonical homomorphism
is an isomorphism. This concept was introduced by A. Néron [1] in the case of a perfect field. In the local case a Néron model exists and is uniquely determined up to an
-isomorphism. A Néron model has the following minimality property: For any smooth
-scheme
and any morphism
of the generic fibres there exists a unique morphism
of
-schemes induced by
.
If is a one-dimensional regular Noetherian scheme,
is a generic point of it,
is its canonical imbedding, and
is an Abelian variety over
, then a Néron model of
is defined as a smooth quasi-projective group scheme
over
that represents the sheaf
relative to the flat Grothendieck topology on
(see [4]).
For a generalization of the concept of a Néron model to arbitrary schemes see [3].
References
[1] | A. Néron, "Modèles minimaux des variétés abéliennes sur les corps locaux et globaux" Publ. Math. IHES , 21 (1964) |
[2] | B. Mazur, "Rational points of Abelian varieties with values in towers of number fields" Invent. Math. , 18 (1974) pp. 183–266 |
[3] | M. Raynaud, "Modèles de Néron" C.R. Acad. Sci. Paris Sér. A , 262 (1966) pp. 345–347 |
[4] | M. Raynaud, "Caractéristique d'Euler–Poincaré d'un faisceau et cohomologie des variétés abéliennes (d'après Ogg–Shafarévitch et Grothendieck)" A. Grothendieck (ed.) J. Giraud (ed.) et al. (ed.) , Dix exposés sur la cohomologie des schémas , North-Holland & Masson (1968) pp. 12–30 |
[5] | A. Grothendieck (ed.) et al. (ed.) , Groupes de monodromie en géométrie algébrique. SGA 7 , Lect. notes in math. , 288 , Springer (1972) |
Comments
References
[a1] | M. Artin, "Néron models" G. Cornell (ed.) J. Silverman (ed.) , Arithmetic geometry , Springer (1986) pp. 213–230 |
Néron model. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=N%C3%A9ron_model&oldid=12071