Namespaces
Variants
Actions

Difference between revisions of "Gell-Mann matrices"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The Gell-Mann matrices are denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101201.png" />. They form a family of traceless Hermitian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101202.png" />-matrices, orthonormalized as follows: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101203.png" />. When multiplied by the complex unit they form a basis in the [[Lie algebra|Lie algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101204.png" />, in analogy with the Pauli matrices and the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101205.png" />. Their explicit form is [[#References|[a1]]]:
+
<!--
 +
g1101201.png
 +
$#A+1 = 9 n = 0
 +
$#C+1 = 9 : ~/encyclopedia/old_files/data/G110/G.1100120 Gell\AAnMann matrices
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101206.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101207.png" /></td> </tr></table>
+
The Gell-Mann matrices are denoted by  $  \lambda _ {1} \dots \lambda _ {8} $.
 +
They form a family of traceless Hermitian  $  ( 3 \times 3 ) $-
 +
matrices, orthonormalized as follows: $  { \mathop{\rm Tr} } ( \lambda _ {j} \lambda _ {k} ) = 2 \delta _ {jk }  $.  
 +
When multiplied by the complex unit they form a basis in the [[Lie algebra|Lie algebra]]  $  \mathfrak s \mathfrak u ( 3 ) $,
 +
in analogy with the Pauli matrices and the Lie algebra  $  \mathfrak s \mathfrak u ( 2 ) $.  
 +
Their explicit form is [[#References|[a1]]]:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101208.png" /></td> </tr></table>
+
$$
 +
\lambda _ {1} = \left (
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g110/g110120/g1101209.png" /></td> </tr></table>
+
\begin{array}{ccc}
 +
0  & 1  & 0  \\
 +
1  & 0  & 0  \\
 +
0  & 0  & 0  \\
 +
\end{array}
 +
 
 +
\right ) ,  \lambda _ {2} = \left (
 +
 
 +
\begin{array}{ccc}
 +
0  &- i  & 0  \\
 +
i  & 0  & 0  \\
 +
0  & 0  & 0  \\
 +
\end{array}
 +
 
 +
\right ) ,
 +
$$
 +
 
 +
$$
 +
\lambda _ {3} = \left (
 +
 
 +
\begin{array}{ccc}
 +
1  & 0  & 0  \\
 +
0  &- 1  & 0  \\
 +
0  & 0  & 0  \\
 +
\end{array}
 +
 
 +
\right ) ,  \lambda _ {4} = \left (
 +
 
 +
\begin{array}{ccc}
 +
0  & 0  & 1  \\
 +
0  & 0  & 0  \\
 +
1  & 0  & 0  \\
 +
\end{array}
 +
 
 +
\right ) ,
 +
$$
 +
 
 +
$$
 +
\lambda _ {5} = \left (
 +
 
 +
\begin{array}{ccc}
 +
0  & 0  &- i  \\
 +
0  & 0  & 0  \\
 +
i  & 0  & 0  \\
 +
\end{array}
 +
 
 +
\right ) ,  \lambda _ {6} = \left (
 +
 
 +
\begin{array}{ccc}
 +
0  & 0  & 0  \\
 +
0  & 0  & 1  \\
 +
0  & 1  & 0  \\
 +
\end{array}
 +
 
 +
\right ) ,
 +
$$
 +
 
 +
$$
 +
\lambda _ {7} = \left (
 +
 
 +
\begin{array}{ccc}
 +
0  & 0  & 0  \\
 +
0  & 0  &- i  \\
 +
0  & i  & 0 \\
 +
\end{array}
 +
 
 +
\right ) ,  \lambda _ {8} = {
 +
\frac{1}{\sqrt 3 }
 +
} \left (
 +
 
 +
\begin{array}{ccc}
 +
1  & 0  & 0  \\
 +
0  & 1  & 0  \\
 +
0  & 0  &- 2  \\
 +
\end{array}
 +
 
 +
\right ) .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Gell-Mann,  Y. Ne'eman,  "The eightfold way" , Benjamin  (1964)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Gell-Mann,  Y. Ne'eman,  "The eightfold way" , Benjamin  (1964)</TD></TR></table>

Latest revision as of 19:41, 5 June 2020


The Gell-Mann matrices are denoted by $ \lambda _ {1} \dots \lambda _ {8} $. They form a family of traceless Hermitian $ ( 3 \times 3 ) $- matrices, orthonormalized as follows: $ { \mathop{\rm Tr} } ( \lambda _ {j} \lambda _ {k} ) = 2 \delta _ {jk } $. When multiplied by the complex unit they form a basis in the Lie algebra $ \mathfrak s \mathfrak u ( 3 ) $, in analogy with the Pauli matrices and the Lie algebra $ \mathfrak s \mathfrak u ( 2 ) $. Their explicit form is [a1]:

$$ \lambda _ {1} = \left ( \begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right ) , \lambda _ {2} = \left ( \begin{array}{ccc} 0 &- i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \\ \end{array} \right ) , $$

$$ \lambda _ {3} = \left ( \begin{array}{ccc} 1 & 0 & 0 \\ 0 &- 1 & 0 \\ 0 & 0 & 0 \\ \end{array} \right ) , \lambda _ {4} = \left ( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \end{array} \right ) , $$

$$ \lambda _ {5} = \left ( \begin{array}{ccc} 0 & 0 &- i \\ 0 & 0 & 0 \\ i & 0 & 0 \\ \end{array} \right ) , \lambda _ {6} = \left ( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{array} \right ) , $$

$$ \lambda _ {7} = \left ( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 &- i \\ 0 & i & 0 \\ \end{array} \right ) , \lambda _ {8} = { \frac{1}{\sqrt 3 } } \left ( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 &- 2 \\ \end{array} \right ) . $$

References

[a1] M. Gell-Mann, Y. Ne'eman, "The eightfold way" , Benjamin (1964)
How to Cite This Entry:
Gell-Mann matrices. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gell-Mann_matrices&oldid=15618
This article was adapted from an original article by P. Stovicek (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article